

Welcome to VerMoUTH’s documentation!

Contents:

	General Overview
	Installation instructions

	Quickstart

	General layout

	Citing

	References

	Martinize 2 workflow
	Pipeline

	1) Read input files

	2) Repair the input graph

	3) Resolution transformation

	4) Apply Links

	5) Post processing

	6) Write output

	Technical background
	Processor

	Data

	Graph algorithms

	File formats
	.ff file format

	.mapping file format

	Tutorials
	Atomistic protein in solution

	Coarse-grained protein in solution

	Transmembrane protein

	PAMAM: a hyperbranched polymer

	A glycosylated protein

	Adding new residues and links

	Adding new modifications

	vermouth
	vermouth package

Indices and tables

	Index

	Module Index

	Search Page

 VerMoUTH 0.9

General Overview

VerMoUTH and martinize2 are tools for setting up starting structures for
molecular dynamics (MD) simulations starting from atomistic coordinates, with a
special focus on polymeric systems (including proteins and DNA). Existing tools
that do this are generally limited to strictly linear polymers, while VerMoUTH
and martinize2 make no assumptions regarding polymer structure. VerMoUTH is a
python library that can be used programmatically. Martinize2 is a command line
tool build on top of that.

VerMoUTH and martinize2 are also capable of dealing with structures where atom
names are not provided, and to some extent with incomplete structures where
atoms are missing from the input structure due to e.g. experimental limitations.
There is also support for post-translational modifications.

VerMoUTH and martinize2 can be used to generate both atomistic and
coarse-grained topologies and are the preferred method of generating topologies
for the [Martini3] force field.

Installation instructions

Vermouth and martinize2 are distributed through pypi and can be installed using
pip.

pip install vermouth

The behavior of the pip command can vary depending on the specificity of your
python installation. See the documentation on installing a python package [https://packaging.python.org/tutorials/installing-packages/#installing-packages]
to learn more.

Vermouth has SciPy [https://scipy.org] as optional dependency. If available
it will be used to accelerate the distance calculations when making bonds

Quickstart

The CLI of martinize2 is very similar to that of martinize1, and can often be
used as a drop-in replacement. For example:

martinize2 -f lysozyme.pdb -x cg_protein.pdb -o topol.top
 -ff martini3001 -dssp -elastic

This will read an atomistic lysozyme.pdb and produce a Martini3 compatible
structure and topology at cg_protein.pdb and topol.top respectively. It
will use the program [DSSP] to determine the proteins secondary structure (which
influences the topology), and produce an elastic network. See martinize2 -h
for more options! Note that if martinize2 runs into problems where the
produced topology might be invalid it will issue warnings. If this is the case
it won’t write any output files, but also see the -maxwarn flag.

General layout

In VerMoUTH a force field is defined as a collection
of Blocks, Links and
Modifications. Each of these is a graph, where nodes
describe atoms (or coarse-grained beads) and edges describe bonds between these.
Blocks describe idealized residues/monomeric repeat units
and their MD parameters and interactions. Links are molecular
fragments that describe MD parameters and interactions between
residues/monomeric repeat units. Modifications are
molecular fragments that describe deviations from Blocks,
such as post-translational modifications and protonation states.
Mappings describe how molecular fragments can be converted
between force fields.

Finally, martinize2 is a pipeline that is built up from
Processors, which are defined by VerMoUTH.
Processors are isolated steps which function on either the complete system, or
single molecules.

Martinize2 identifies atoms mostly based on their connectivity. We read the
bonds present in the input file (as CONECT records), and besides that we
guess bonds based on atom names (within
residues) and on distances (between residues, using the same criteria as
[VMD]). This means that your input structure must be reasonable.

Citing

A publication for vermouth and martinize 2 is currently being written.
For now, please cite the relevant chapter from the thesis of Peter C Kroon:

Kroon, P.C. (2020). Martinize 2 – VerMoUTH. Aggregate, automate, assemble (pp. 16-53). ISBN:
978-94-034-2581-8.

References

	Martini3

	P.C.T. Souza, R. Alessandri, J. Barnoud, S. Thallmair, I. Faustino, F. Grünewald, et al., Martini 3: a general purpose force field for coarse-grained molecular dynamics, Nat. Methods. 18 (2021) 382–388. doi:10.1038/s41592-021-01098-3.

	VMD

	
	Humphrey, A. Dalke and K. Schulten, “VMD - Visual Molecular Dynamics”, J. Molec. Graphics, 1996, vol. 14, pp. 33-38. http://www.ks.uiuc.edu/Research/vmd/.

	DSSP

	
	W.G. Touw, C. Baakman, J. Black, T.A.H. te Beek, E. Krieger, R.P. Joosten, et al., A series of PDB-related databanks for everyday needs, Nucleic Acids Res. 43 (2015) D364–D368. doi:10.1093/nar/gku1028.

	
	Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features., Biopolymers. 22 (1983) 2577–637. doi:10.1002/bip.360221211.

 VerMoUTH 0.9

Martinize 2 workflow

Pipeline

Martinize 2 is the main command line interface entry point for vermouth.
It effectively consists of 6 stages:

	reading input files

	repairing the input molecule

	mapping the input molecule to the desired output force field and resolution

	applying Links to generate inter-residue interactions

	post-processing, such as building an elastic network

	writing output files

We’ll describe each stage in more detail here. It is good to bear in mind
however that in all stages the recognition/identification of atoms/particles is
based on their connectivity in addition to any atom properties.

Throughout this document, when we refer to an ‘edge’ we mean a connection
between two nodes in a graph. With ‘bonds’ we mean a chemical connection
including the corresponding simulation parameters. Similarly, with ‘molecule’ we
mean a connected graph consisting of atoms and edges. Note that this is not
necessarily the same as a protein chain, since these could be connected through
e.g. a disulphide bridge.

If martinize2 at some point encounters a situation that might result in an
incorrect topology it will issue a warning, and refuse to write output files so
that you are forced to examine the situation, but also see the -maxwarn CLI
option. The options -v and -vv can be used to print more debug output,
while the options -write-graph, -write-repair and -write-canon can
be used to write out the system after Make bonds, Repair graph and
Identify modifications, respectively. All of these can help you track down
what’s going wrong where.

1) Read input files

Martinize2 can currently read input structures from .gro and .pdb files. .pdb
files are preferred however, since they contain more information, such as chain
identifiers, and TER and CONECT records.

Reading PDB files

Reading PDB files is done by PDBInput.
We take into account the following PDB records: MODEL and ENDMDL to
determine which model to parse; ATOM and HETATM; TER, which can be
used to separate molecules; CONECT, which is used to add edges; and END.

Will issue a pdb-alternate warning if any atoms in the PDB file have an
alternate conformation that is not ‘A’, since those will always be ignored.

Relevant CLI options: -f; -model; -ignore; -ignh.

Make bonds

Since atom identification is governed by their connectivity we need to generate
bonds in the input structure. Where possible we get them from the input file
such as PDB CONECT records. Beyond that, edges are added by
MakeBonds. By default edges will be
added based on atom names and distances, but this behaviour can be changed via
the CLI option -bonds-from.

To add edges based on atom names the Block from the input force
field is used as reference for every residue in the input structure where
possible. This is not possible when a residue contains multiple atoms with the
same name, nor when there is no Block corresponding to the residue
1. Note that this will only ever create edges within residues.

Edges will be added based on distance when they are close enough together,
except for a few exceptions (below). Atoms will be considered close enough based
on their element (taken from either the PDB file directly, or deduced from atom
name 2). The distance threshold is multiplied by -bonds-fudge to allow
for conformations that are slightly out-of-equilibrium. Edges will not be added
from distances in two cases: 1) if edges could be added based on atom names no
edges will be added between atoms that are not bonded in the reference
Block. 2) No edges will be added between residues if one of the
atoms involved is a hydrogen atom. Edges added this way are logged as debug
output.

If your input structure is far from equilibrium and adding edges based on
distance is likely to produce erroneous results, make sure to provide CONECT
records describing at least the edges between residues, and between atoms
involved in modifications, such as termini and PTMs.

Will issue a general warning when it is requested to add edges based on atom
names, but this cannot be done for some reason. This commonly happens when your
input structure is a homo multimer without TER record and identical residue
numbers and chain identifiers across the monomers. In this case martinize2
cannot distinguish the atom “N”, residue ALA1, chain “A” from the atom “N”,
residue ALA1, chain “A” in the next monomer. The easiest solution is to place
strategic TER records in your PDB file.

Relevant CLI options: -bond-from; -bonds-fudge

	1

	Based on residue name.

	2

	The method for deriving the element from an atom name is extremely
simplistic: the first letter is used. This will go wrong for two-letter
elements such as ‘Fe’, ‘Cl’, and ‘Cu’. In those cases, make sure your PDB
file specified the correct element. See also:
add_element_attr()

Annotate mutations and modifications

As a last step martinize2 allows you to make some changes to your input
structure from the CLI, for example to perform point mutations, or to apply
PTMs and termini. This is done in part by
AnnotateMutMod, and completed by
Repair graph.

The -mutate option can be used to change the residue name of one or more
residues. For example, you can specify -mutate PHE42:ALA to mutate all
residues with residue name “PHE” and residue number 42 to “ALA”. Or change all
“HSE” residues to “HIS”: -mutate HSE:HIS. Mutations can be specified in a
similar way.

The specifications nter and cter can be used to quickly refer to all N-
and C-terminal residues respectively 3. In addition, the CLI options
-nter and -cter can be used to change the N- and C-termini. By default
martinize2 will try to apply charged protein termini (‘N-ter’ and ‘C-ter’). If
this is not what you want, for example because your molecule is not a protein,
be sure to provide the appropriate -nter and -cter options. You can
specify the modification none to specify that a residue should not have any
modifications. Note that if you use this for the termini you may end up with
chemically invalid, uncapped, termini.

Relevant CLI options: -mutate, -modify, -nter, -cter, -nt

	3

	N- and C-termini are defined as residues with 1 neighbour and having a
higher or lower residue number than the neighbour, respectively. Note that
this does not include zwitterionic amino acids!
This also means that if your protein has a chain break you’ll end up with
more termini than you would otherwise expect.

2) Repair the input graph

Depending on the origin of your input structure, there may be atoms missing, or
atoms may have non-standard names. In addition, some residues may include
modifications such as PTMs.

Repair graph

The first step is to complete the graph so that it contains all atoms described
by the reference Block, and that all atoms have the correct names.
These blocks are taken from the input force field based on residue names (taking
any mutations and modifications into account).
RepairGraph takes care of all this.

To identify atoms in a residue we consider the
Maximum common induced subgraph between the residue and
its reference since the residue can be both too small (atoms missing in the
input) and too large (atoms from PTMs) at the same time. Unfortunately, this is
a very expensive operation which scales exponentially with the size of the
residue. So if you know beforehand that your structure contains (very) large
PTMs, such as lipidations, consider specifying those as separate residues.

The maximum common induced subgraph is found using
ISMAGS, where nodes are considered equal if their
elements are equal. Beforehand, the atoms in the residue will be sorted such
that the isomorphism where most atom names correspond with the reference is
found. This sorting also speeds up the calculation significantly, so if you’re
working with a system containing large residues consider correcting some of the
atom names.

Will issue an unknown-residue warning if no Block can be retrieved for a
given residue name. In this case the entire molecule will be removed from the
system.

Identify modifications

Secondly, all modifications are identified. Repair graph will also tag all
atoms it did not recognise, and those are processed by
CanonicalizeModifications.

This is done by finding the solution where all unknown atoms are covered by the
atoms of exactly one Modification, where the modification must be an
induced subgraph of the
molecule. Every modification must contain at least one “anchoring” atom, which
is an atom that is also described by a Block. Unknown atoms are
considered to be equal if their element is equal; anchor atoms are considered
equal if their atom name is equal. Because modifications must be
induced subgraphs of the
input structure there can be no missing atoms!

After this step all atoms will have correct atom names, and any residues that
are include modifications will be labelled. This information is later used
during the resolution transformation

An unknown-input warning will be issued if a modification cannot be
identified. In this case the atoms involved will be removed from the system.

Rebuild coordinates for missing atoms

Currently martinize2 is not capable of rebuilding coordinates for missing atoms.

3) Resolution transformation

The resolution transformation is done by
DoMapping. This processor will produce
your molecules at the target resolution, based on the available mappings. These
mappings are read from the .map and .mapping files available in the
library 4. See also File formats. In essence these
mappings describe how molecular fragments (atoms and bonds) correspond to a
block in the target force field. We find all the ways these mappings can fit
onto the input molecule, and add the corresponding blocks and modifications to
the resulting molecule.

For a molecular fragment to match the input molecule the atom and residue names
need to match 5. This is why we first repair
the input molecule so that you only need to consider the canonical atom names
when adding mappings. Mappings defined by .mapping files can also cross
residue boundaries (where specified).

Edges and interactions within the blocks will come from the target force field.
Edges between the blocks will be generated based on the connectivity of the
input molecule, i.e. if atoms A and B are connected in the input molecule, the
particles they map to in the output force field will also be connected.
Interactions across separate blocks will be added in the next step.

The processor will do some sanity checking on the resulting molecule, and issue
an unmapped-atom warning if there are modifications in the input molecule
for which no mapping can be found. In addition, this warning will also be issued
if there are any non-hydrogen atoms that are not mapped to the output molecule.
A more serious inconsistent-data warning will be issued for the following
cases:

	there are multiple modification mappings, which overlap

	there are multiple block mappings, which overlap

	there is an output particle that is constructed from multiple input atoms,
and some “residue level” attributes (such as residue name and number) are not
consistent between the constructing atoms.

	there is an atom which maps to multiple particles in the output, but these
particles are disconnected

	there is an interaction that is being set by multiple mappings

Relevant CLI options: -ff, -map-dir

	4

	When -ff (target force field) and -from (original force field)
are the same the mappings will be generated automatically.

	5

	This is only mostly true. All attributes except a few that are not always
defined must match. Not all attributes (such as ‘mass’) are defined in all
cases, depending on the source of the mappings. Note that we also take into
account that atom names might have changed due to modifications: we use the
atom name as it is defined by the Block.

4) Apply Links

Next interactions between residues are added by
DoLinks. We do this based on the concept
of Links, which are molecular fragments that describe
interactions, and which atoms they should apply to. Links are very powerful and
flexible tools, and we use them to generate all interactions that depend on the
local structure of the polymer. For example, all interactions that depend on the
protein sequence or secondary structure are defined by Links.

Links can both add, change and remove interactions and nodes. Because of this,
the order in which links are applied matters for the final topology. We apply
them in the order in which they are defined in the force field files. Therefore
it is important to define links in the order of most general to most specific. A
link is applied in all the places where it fits onto the molecule produced by
the mapping step.

For a link to match all its node attributes must match, where the ‘order’
attribute is a special case. The order attributes are translated to a
difference in residue numbers, so that nodes ‘BB’ and ‘+BB’ must have a
difference in residue number of exactly 1 6. Due to the reliance on residue
numbers this can cause complications for non-linear polymers. For those cases
order specifications such as ‘>’ (greater than) and ‘*’ (different from) 7
might be useful.

	6

	Also ‘-BB’ and ‘BB’, ‘+BB’ and ‘++BB’, etc.

	7

	Remember that links can overlap! The link BB *BB will be applied both
forwards and backwards!

5) Post processing

There can be any number of post processing steps. For example to add an elastic
network, or to generate Go virtual sites. We will not describe their function
here in detail. Instead, see for example
ApplyRubberBand and
GoVirtIncludes.

Relevant CLI options: -elastic, -ef, -el, -eu, -ermd,
-ea, -ep, -em, -eb, -eunit, -govs-include,
-govs-moltype

6) Write output

Finally, the topology and conformation are written to files (if no warnings were
encountered along the way). Currently martinize2 and VerMoUTH can only write
Gromacs itp files. Martinize2 will write a separate itp file for every unique
molecule in the system.

Relevant CLI options: -x, -o, -sep, -merge

 VerMoUTH 0.9

Technical background

Here we will provide some additional technical background about the chosen data
structures and graph algorithms.

	Processor

	Data
	Molecule

	Block

	Link

	Modification

	Force Field

	Mapping

	Graph algorithms
	Definitions
	Graph

	Subgraph

	Graph isomorphism

	Subgraph isomorphism

	Induced subgraph isomorphism

	Maximum common induced subgraph

	Isomorphism

 VerMoUTH 0.9

Processor

 VerMoUTH 0.9

Data

VerMoUTH knows several data structures, most of which describe atoms (or CG
beads) and connections between those. As such, these are modelled as
mathematical graphs, where the nodes describe the particles, and edges the bonds
between these. In addition, these data structures describe the MD parameters and
interactions, such as bonds, atom types, angles, etc.

Molecule

A Molecule is a Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph] where nodes
are atoms/beads, and edges are the connections between theses (i.e. bonds 1)
Generally, molecules are a single connected components 2. Interactions are
accessible through the interactions
attribute. Non-bonded parameters are not fully defined: nodes have an ‘atype’
attribute describing the particle type to be used in an MD simulation, but we
don’t store the associated e.g. Lennard-Jones parameters.

Molecules define a few notable convenience
methods:

	merge_molecule(): Add all atoms and
interactions from a molecule to this one. Note that this can also be used to
add a vermouth.molecule.Block to a molecule! This way you can
incrementally build polymers from monomers. This method will always produce
a disconnected graph, so be sure to add the appropriate edges afterwards.

	make_edges_from_interactions(): To generate
edges from bond, angle, dihedral, cmap and constraint interactions. This is
the only way interactions and their parameters are interpreted in vermouth.

	1

	But note that not every edge has to correspond to a bond and vice versa.

	2

	I.e. there is a path from any node to any other node in the molecule.

Block

A Block can be seen as a canonical residue
containing all atoms and interactions, and where all atom names are correct.
A block should be a single connected component, and atom names within a block
are assumed to be unique.

Blocks can be defined through Gromacs’ .itp and .rtp file formats.

Blocks define a few notable convenience
methods:

	guess_angles(): Generate all possible angles
based on the edges.

	guess_dihedrals(): Generate all possible
dihedral angles based on the edges.

	to_molecule(): Create a new
Molecule based on this block.

Link

A Link is used to describe interactions between
residues. As such, it consists of nodes and edges describing the molecular
fragment it should apply to, as well as the associated changes in MD parameters.
For example, a link can describe the addition, change or removal of specific
interactions or node attributes. They can also be used to remove nodes. Although
it is possible to generate all MD parameters and interactions using Links,
rather than taking them from constituent blocks, this is not the preferred
method. The approach where links only affect the parameters where they depend on
the local structure makes it easier to reason about how the final topology is
constructed, and the performance is better.

Besides nodes, edges and interactions links also describe non-edges, patterns
and removed interactions. Non-edges and patterns are used when matching the link
to a molecule. Where there is a non-edge in the link there cannot be an edge in
the molecule, and the atoms involved do not need to be present in the molecule.
Patterns provide a concise way where either one of multiple conditions must be
met. For example two neighbouring ‘BB’ beads, where one must have a helical
secondary structure, and the other should be a coil.

Links can be defined through .ff files.
See also: Apply Links.

Modification

A Modification describes how a residue deviates from
its associated Block, such as non-standard
protonation states and termini. Modifications differentiate between
atoms/particles that should already be described by the block and atoms that are
only described by the modification.

A modification can add or remove nodes, change node attributes, and add, change,
or remove interactions; much like a Link.

Modifications can be defined through .ff files.
See also: Identify modifications.

Force Field

A force field is a collection of
Blocks, Links and
Modifications. Force fields are identified by their
name, which should be unique. Within a
force field blocks and modifications should also have unique names.

Note that this is only a subset of a force field in the MD sense: a VerMoUTH
force field does not include e.g.
non-bonded parameters (only the particle types are included), or functional
forms.

The universal force field deserves special mention. If not overridden with
the -from flag this force field is used. This force field does not define
any MD parameters, but this is fine. Instead, this force field defines only atom
names and the associated connections.

Mapping

A Mapping describes how molecular fragments can
be transformed from one force field to another.

Mappings can be provided through [backward] style .map files, or the more
powerful (but verbose) .mapping format.
See also: Resolution transformation.

	backward

	T.A. Wassenaar, K. Pluhackova, R.A. Böckmann, S.J. Marrink, D.P. Tieleman, Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models, J. Chem. Theory Comput. 10 (2014) 676–690. doi:10.1021/ct400617g.

 VerMoUTH 0.9

Graph algorithms

Vermouth describes molecules and molecular fragments as graphs where atoms are
nodes and connections between them (e.g. bonds) are edges. This allows us to use
the connectivity to identify which atom is which, meaning we are no longer
dependent on atom names.

Definitions

Graph

A graph \(G = (V, E)\) is a collection of nodes (\(V\)) connected by
edges (\(E\)): \(e_{ij} = (v_i, v_j) \in E\). In undirected graphs
\(e_{ij} = e_{ji}\). Unless we specify otherwise all graphs used in vermouth
are undirected. The size of a graph is equal to the number of nodes:
\(|G| = |V|\).

Subgraph

Graph \(H = (W, F)\) is a subgraph of graph \(G = (V, E)\) if:

\[\begin{split}|H| &< |G|\\
W &\subset V\\
e_{ij} &\in F \quad \forall e_{ij} \in E\\
e_{ij} &\notin F \quad \forall e_{ij} \notin E\\\end{split}\]

This means that all nodes in \(H\) are in \(G\), and that nodes are
connected in \(H\) if and only if they are connected in \(G\).

Graph isomorphism

A graph isomorphism \(m\) between graphs \(H = (W, F)\) and
\(G = (V, E)\) is a bijective mapping \(m: V \mapsto W\) such that the
following conditions hold:

\[\begin{split}|H| &= |G|\\
m(v) &\simeq v \quad &\forall v \in V\\
(m(v_i), m(v_j)) &\simeq (v_i, v_j) \quad &: (m(v_i), m(v_j)) \in F \enspace \forall (v_i, v_j) \in E\end{split}\]

This means that every node in \(G\) maps to exactly one node in \(H\)
such that all connected nodes in \(G\) are connected in \(H\). Note that
labels/attributes on nodes and edges (such as element or atom name) can affect
the equivalence criteria.

Subgraph isomorphism

A subgraph isomorphism is a Graph isomorphism, but
without the constraint that \(|H| = |G|\). Instead, \(|H| <= |G|\) if
\(H\) is subgraph isomorphic to \(G\).

Induced subgraph isomorphism

As Subgraph isomorphism with the added constraint that
equivalent nodes not connected in \(G\) are not connected in \(H\):

\[(m(v_i), m(v_j)) \notin F \quad \forall (v_i, v_j) \notin E\]

We denote \(H\) being induced subgraph isomorphic to \(G\) as
\(H \precsim G\).

It is important to note that a path graph is not subgraph isomorphic
to the corresponding cycle graph of the same size. For example, n-propane is not
subgraph isomorphic to cyclopropane!

Maximum common induced subgraph

The maximum common induced subgraph between \(G\) and \(H\) is the
largest graph \(J\) such that \(J \precsim G\) and \(J \precsim H\).
Commonly the answer is given as a general mapping between \(G\) and
\(H\).

Isomorphism

Vermouth and martinize2 identify atoms by connectivity, generally combined with
a constraint on element or atom name. We do this using either a
Maximum common induced subgraph (during the
Repair graph step) or a
Induced subgraph isomorphism (the other steps). In all
these cases we effectively find how nodes in the molecule we’re working on match
with nodes in our reference graphs, such as blocks.

During the Repair graph step there are two, related,
complications: 1) we need a “best” overlay, where as many atom names match as
possible; and 2) There can be very many (equivalent) possible
overlays/isomorphisms. Let’s address the second concern first. As example we’ll
look at the automorphisms (= self-isomorphism, i.e. how does a graph fit on
itself) of propane (CH3-CH2-CH3).

There are 2 isomorphisms for the carbons:
\(C_\alpha-C_\beta-C_\gamma \mapsto C_\alpha-C_\beta-C_\gamma\) and
\(C_\alpha-C_\beta-C_\gamma \mapsto C_\gamma-C_\beta-C_\alpha\). Similarly,
there are 2 isomorphisms for the central methylene group:
\(H_1-C_\beta-H_2 \mapsto H_1-C_\beta-H_2\) and
\(H_1-C_\beta-H_2 \mapsto H_2-C_\beta-H_1\). Each terminal methyl group
however, has 6 unique isomorphisms!

\[H_1H_2H_3 \mapsto (H_1H_2H_3, H_1H_3H_2, H_2H_1H_3, H_3H_1H_2, H_2H_3H_1, H_3H_2H_1)\]

This means that in total, propane, a molecule consisting of 11 atoms, has
\(2 (carbons) \times 2 (methylene) \times 6 (methyl) \times 6 (methyl) = 144\)
automorphisms! Now imagine how this scales for a lipid. Clearly this spirals out
of control very quickly, and it is generally unfeasible to generate all possible
isomorphisms 1.

Luckily for us however, we’re not interested in finding all these isomorphisms,
since we can consider most of these to be equivalent. For our use case it
doesn’t matter whether \(H_1\) maps to \(H_1\) or \(H_2\) so long as
\(H_1\) and \(H_2\) are equivalent. There is one catch however: we need
to find the isomorphism where most atom names match. We can achieve this by
preferentially using nodes with a lower index 2 when given a choice between
symmetry equivalent nodes. The [ISMAGS] algorithm does exactly this: it
calculates symmetry unique isomorphisms preferentially using nodes with a
smaller index.

Note that this problem only comes up when your graphs are (very) symmetric. In
all other steps we constrain the isomorphism such that nodes are only considered
equal if their atom names match. Since atom names are generally unique, this
means that this problem is sidestepped completely. The only place where we
cannot do this is during the Repair graph step, since
at that point we cannot assume that the atoms names in our molecule are correct.

	1

	This problem gets even worse when trying to find the
Maximum common induced subgraph.

	2

	In other words, we impose an ordering on the nodes in the graph. We do
this by ordering the nodes based on whether there is a node with a
corresponding atom name in the reference and subsequently sorting by atom name.

	ISMAGS

	
	Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, M. Pickavet, The Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration, PLoS One. 9 (2014) e97896. doi:10.1371/journal.pone.0097896.

 VerMoUTH 0.9

File formats

VerMoUTH introduces two new file formats. The .ff format for defining
blocks, links and :
ref:modifications <data:modification>. Note that you can also define blocks
(and basic links) with Gromacs .itp and .rtp files. The .mapping
format can be used to define mappings. Mappings that don’t
cross residue boundaries can also be defined using .map files.

These file formats are still not finalized and subject to change. Therefore
these file formats are not yet documented. If you need to implement (mappings
for) your own residues you’ll need to reverse engineer the format from the
existing files.

.ff file format

Used for defining blocks, links and
modifications.

.mapping file format

Used for defining mappings for single blocks,
modifications, and block mappings that cross residue boundaries.

 VerMoUTH 0.9

Tutorials

Here we will list all tutorials for vermouth and Martinize 2.

	Atomistic protein in solution

	Coarse-grained protein in solution

	Transmembrane protein

	PAMAM: a hyperbranched polymer

	A glycosylated protein

	Adding new residues and links

	Adding new modifications

 VerMoUTH 0.9

Atomistic protein in solution

 VerMoUTH 0.9

Coarse-grained protein in solution

 VerMoUTH 0.9

Transmembrane protein

With cholesterol in the membrane

 VerMoUTH 0.9

PAMAM: a hyperbranched polymer

 VerMoUTH 0.9

A glycosylated protein

 VerMoUTH 0.9

Adding new residues and links

 VerMoUTH 0.9

Adding new modifications

 VerMoUTH 0.9

vermouth

	vermouth package
	Subpackages
	vermouth.dssp package
	Submodules

	Module contents

	vermouth.gmx package
	Submodules

	Module contents

	vermouth.pdb package
	Submodules

	Module contents

	vermouth.processors package
	Submodules

	Module contents

	Submodules
	vermouth.citation_parser module

	vermouth.edge_tuning module

	vermouth.ffinput module

	vermouth.file_writer module

	vermouth.forcefield module

	vermouth.geometry module

	vermouth.graph_utils module

	vermouth.ismags module
	ISMAGS Algorithm

	vermouth.log_helpers module

	vermouth.map_input module

	vermouth.map_parser module

	vermouth.molecule module

	vermouth.parser_utils module

	vermouth.selectors module

	vermouth.system module

	vermouth.truncating_formatter module

	vermouth.utils module

	Module contents

 VerMoUTH 0.9

vermouth package

Subpackages

	vermouth.dssp package
	Submodules
	vermouth.dssp.dssp module

	Module contents

	vermouth.gmx package
	Submodules
	vermouth.gmx.gro module

	vermouth.gmx.itp module

	vermouth.gmx.itp_read module

	vermouth.gmx.rtp module

	Module contents

	vermouth.pdb package
	Submodules
	vermouth.pdb.pdb module

	Module contents

	vermouth.processors package
	Submodules
	vermouth.processors.add_molecule_edges module

	vermouth.processors.annotate_mut_mod module

	vermouth.processors.apply_posres module

	vermouth.processors.apply_rubber_band module

	vermouth.processors.attach_mass module

	vermouth.processors.average_beads module

	vermouth.processors.canonicalize_modifications module

	vermouth.processors.do_links module

	vermouth.processors.do_mapping module

	vermouth.processors.go_vs_includes module

	vermouth.processors.gro_reader module

	vermouth.processors.locate_charge_dummies module

	vermouth.processors.make_bonds module

	vermouth.processors.merge_all_molecules module

	vermouth.processors.merge_chains module

	vermouth.processors.name_moltype module

	vermouth.processors.pdb_reader module

	vermouth.processors.processor module

	vermouth.processors.quote module

	vermouth.processors.rename_modified_residues module

	vermouth.processors.repair_graph module

	vermouth.processors.set_molecule_meta module

	vermouth.processors.sort_molecule_atoms module

	vermouth.processors.tune_cystein_bridges module

	Module contents

Submodules

	vermouth.citation_parser module

	vermouth.edge_tuning module

	vermouth.ffinput module

	vermouth.file_writer module

	vermouth.forcefield module

	vermouth.geometry module

	vermouth.graph_utils module

	vermouth.ismags module
	ISMAGS Algorithm

	vermouth.log_helpers module

	vermouth.map_input module

	vermouth.map_parser module

	vermouth.molecule module

	vermouth.parser_utils module

	vermouth.selectors module

	vermouth.system module

	vermouth.truncating_formatter module

	vermouth.utils module

Module contents

VerMoUTH: The Very Modular Universal Transformation Helper

Provides functionality for creating MD topologies from coordinate files. Powers
the CLI tool martinize2.

 VerMoUTH 0.9

vermouth.dssp package

Submodules

	vermouth.dssp.dssp module

Module contents

 VerMoUTH 0.9

vermouth.dssp.dssp module

Assign protein secondary structures using DSSP.

	
class vermouth.dssp.dssp.AnnotateDSSP(executable='dssp', savedir=None)

	Bases: vermouth.processors.processor.Processor

	
name = 'AnnotateDSSP'

	

	
run_molecule(molecule)

	

	
class vermouth.dssp.dssp.AnnotateMartiniSecondaryStructures

	Bases: vermouth.processors.processor.Processor

	
name = 'AnnotateMartiniSecondaryStructures'

	

	
static run_molecule(molecule)

	

	
class vermouth.dssp.dssp.AnnotateResidues(attribute, sequence, molecule_selector=<function select_all>)

	Bases: vermouth.processors.processor.Processor

Set an attribute of the nodes from a sequence with one element per residue.

Read a sequence with one element per residue and assign an attribute of
each node based on that sequence, so each node has the value corresponding
to its residue. In most cases, the length of the sequence has to match the
total number of residues in the system. The sequence must be ordered in the
same way as the residues in the system. If all the molecules have the same
number of residues, and if the length of the sequence corresponds to the
number of residue of one molecule, then the sequence is repeated to all
molecules. If the sequence contains only one element, then it is repeated
to all the residues ofthe system.

	Parameters

	
	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the node attribute to populate.

	sequence (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]) – Per-residue sequence.

	molecule_selector (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) – Function that takes an instance of vermouth.molecule.Molecule
as argument and returns True if the molecule should be considered,
else False.

	
name = 'AnnotateResidues'

	

	
run_molecule(molecule)

	Run the processor on a single molecule.

	Parameters

	molecule (vermouth.molecule.Molecule) –

	Returns

	

	Return type

	vermouth.molecule.Molecule

	
run_system(system)

	Run the processor on a system.

	Parameters

	system (vermouth.system.System) –

	Returns

	

	Return type

	vermouth.system.System

	
exception vermouth.dssp.dssp.DSSPError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception raised if DSSP fails.

	
vermouth.dssp.dssp.annotate_dssp(molecule, executable='dssp', savedir=None, attribute='secstruct')

	Adds the DSSP assignation to the atoms of a molecule.

Runs DSSP on the molecule and adds the secondary structure assignation as
an attribute of its atoms. The attribute name in which the assignation is
stored is controlled with the “attribute” argument.

Only proteins can be annotated. Non-protein molecules are returned
unmodified, so are empty molecules, and molecules for which no positions
are set.

The atom names are assumed to be compatible with DSSP. Atoms with no known
position are not passed to DSSP which may lead to an error in DSSP.

Warning

The molecule is annotated in-place.

	Parameters

	
	molecule (Molecule) – The molecule to annotate. Its atoms must have the attributes required
to write a PDB file; other atom attributes, edges, or molecule
attributes are not used.

	executable (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path or name in the research PATH of the DSSP executable.

	savedir (None [https://docs.python.org/3/library/constants.html#None] or str [https://docs.python.org/3/library/stdtypes.html#str]) – If set to a path, the DSSP output will be written in this directory.
The option is only available if chains are defined with the ‘chain’
atom attribute.

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the atom attribute in which to store the annotation.

See also

run_dssp(), read_dssp2()

	
vermouth.dssp.dssp.annotate_residues_from_sequence(molecule, attribute, sequence)

	Sets the attribute attribute to a value from sequence for every node in
molecule. Nodes in the n’th residue of molecule are given the n’th
value of sequence.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The molecule to annotate. Is modified in-place.

	attribute (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The attribute to set.

	sequence (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]) – The values assigned.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the length of sequence is different from the number of residues in
molecule.

	
vermouth.dssp.dssp.convert_dssp_annotation_to_martini(molecule, from_attribute='secstruct', to_attribute='cgsecstruct')

	For every node in molecule, translate the from_attribute with
convert_dssp_to_martini(), and assign it to the attribute
to_attribute.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The molecule to process. Is modified in-place.

	from_attribute (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The attribute to read.

	to_attribute (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The attribute to set.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If not all nodes have a from_attribute.

	
vermouth.dssp.dssp.convert_dssp_to_martini(sequence)

	Convert a sequence of secondary structure to martini secondary sequence.

Martini treats some secondary structures with less resolution than dssp.
For instance, the different types of helices that dssp discriminates are
seen the same by martini. Yet, different parts of the same helix are seen
differently in martini.

In the Martini force field, the B and E secondary structures from DSSP are
both treated as extended regions. All the DSSP helices are treated the
same, but the different part of the helices (beginning, end, core of a
short helix, core of a long helix) are treated differently.

After the conversion, the secondary structures are:
* :F: Collagenous Fiber
* :E: Extended structure (β sheet)
* :H: Helix structure
* :1: Helix start (H-bond donor)
* :2: Helix end (H-bond acceptor)
* :3: Ambivalent helix type (short helices)
* :T: Turn
* :S: Bend
* :C: Coil

	Parameters

	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – A sequence of secondary structures as read from dssp. One letter per
residue.

	Returns

	A sequence of secondary structures usable for martini. One letter per
residue.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
vermouth.dssp.dssp.read_dssp2(lines)

	Read the secondary structure from a DSSP output.

Only the first column of the “STRUCTURE” block is read. See the
documentation of the DSSP format [http://swift.cmbi.ru.nl/gv/dssp/DSSP_3.html] for more details.

The secondary structures that can be read are:

	H

	α-helix

	B

	residue in isolated β-bridge

	E

	extended strand, participates in β ladder

	G

	3-helix (3-10 helix)

	I

	5 helix (π-helix)

	T

	hydrogen bonded turn

	S

	bend

	C

	loop or irregular

The “C” code for loops and random coil is translated from the gap used in
the DSSP file for an improved readability.

Only the version 2 and 3 of DSSP is supported. If the format is not
recognized as comming from that version of DSSP, then a IOError [https://docs.python.org/3/library/exceptions.html#IOError] is
raised.

	Parameters

	lines – An iterable over the lines of the DSSP output. This can be e.g. a
list of lines, or a file handler. The new line character is ignored.

	Returns

	secstructs – The secondary structure assigned by DSSP as a list of one-letter
secondary structure code.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – When a line could not be parsed, or if the version of DSSP
is not supported.

	
vermouth.dssp.dssp.run_dssp(system, executable='dssp', savefile=None, defer_writing=True, version='3.0.0')

	Run DSSP on a system and return the assigned secondary structures.

Run DSSP using the path (or name in the research PATH) given by
“executable”. Return the secondary structure parsed from the output of the
program.

In order to call DSSP, a PDB file is produced. Therefore, all the molecules
in the system must contain the required attributes for such a file to be
generated. Also, the atom names are assumed to be compatible with the
‘universal’ force field for DSSP to recognize them.
However, the molecules do not require the edges to be defined.

DSSP is assumed to be in version 2 or 3. The secondary structure codes are
described in read_dssp2().

If “savefile” is set to a path, then the output of DSSP is written in
that file.

	Parameters

	
	system (System) –

	executable (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to find the DSSP executable.

	savefile (None [https://docs.python.org/3/library/constants.html#None] or str [https://docs.python.org/3/library/stdtypes.html#str] or pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – If set to a path, the output of DSSP is written in that file.

	defer_writing (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use write() for writing data

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – Supported versions for running dssp

	Returns –

	list[str] – The assigned secondary structures as a list of one-letter codes.
The secondary structure sequences of all the molecules are combined
in a single list without delimitation.

	Raises

	
	DSSPError – DSSP failed to run.

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – The output of DSSP could not be parsed.

See also

	read_dssp2()

	Parse a DSSP output.

	
vermouth.dssp.dssp.sequence_from_residues(molecule, attribute, default=None)

	Generates a sequence of attribute, one per residue in molecule.

	Parameters

	
	molecule (vermouth.molecule.Molecule) – The molecule to process.

	attribute (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The attribute of interest.

	default (object [https://docs.python.org/3/library/functions.html#object]) – Yielded if the first node of a residue has no attribute attribute.

	Yields

	object – The value of attribute for every residue in molecule.

 VerMoUTH 0.9

vermouth.gmx package

Submodules

	vermouth.gmx.gro module

	vermouth.gmx.itp module

	vermouth.gmx.itp_read module

	vermouth.gmx.rtp module

Module contents

Provides functionality to read and write Gromacs specific files.

 VerMoUTH 0.9

vermouth.gmx.gro module

Provides functionality to read and write GRO96 files.

	
vermouth.gmx.gro.read_gro(file_name, exclude=('SOL',), ignh=False)

	Parse a gro file to create a molecule.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file to read.

	exclude (collections.abc.Container [https://docs.python.org/3/library/collections.abc.html#collections.abc.Container][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Atoms that have one of these residue names will not be included.

	ignh (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether hydrogen atoms should be ignored.

	Returns

	The parsed molecules. Will not contain edges.

	Return type

	vermouth.molecule.Molecule

	
vermouth.gmx.gro.write_gro(system, file_name, precision=7, title='Martinized!', box=(0, 0, 0), defer_writing=True)

	Write system to file_name, which will be a GRO96 file.

	Parameters

	
	system (vermouth.system.System) – The system to write.

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file to write to.

	precision (int [https://docs.python.org/3/library/functions.html#int]) – The desired precision for coordinates and (optionally) velocities.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title for the gro file.

	box (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float]]) – Box length and optionally angles.

	defer_writing (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use write() for writing data

 VerMoUTH 0.9

vermouth.gmx.itp module

Handle the ITP file format from Gromacs.

	
vermouth.gmx.itp.write_molecule_itp(molecule, outfile, header=(), moltype=None, post_section_lines=None, pre_section_lines=None)

	Write a molecule in ITP format.

The molecule must have a nrexcl attribute. Each atom in the molecule must
have at least the following keys: atype, resid, resname, atomname,
and charge_group. Atoms can also have a charge and a mass key.

If the moltype argument is not provided, then the molecule must have a
“moltype” meta attribute.

	Parameters

	
	molecule (Molecule) – The molecule to write. See above for the minimal information the
molecule must contain.

	outfile (io.TextIOBase [https://docs.python.org/3/library/io.html#io.TextIOBase]) – The file in which to write.

	header (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of lines to write as comment at the beginning of the file. The
comment character and the new line should not be included as they will
be added in the function.

	moltype (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The molecule type. If set to None (default), the molecule type is
read from the “moltype” key of molecule.meta.

	post_section_lines (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – List of lines to write at the end of some sections of the file. The
argument is passed as a dict with the keys being the name of the
sections, and the values being the lists of lines. If the argument is
set to None, the lines will be read from the “post_section_lines” key
of molecule.meta.

	pre_section_lines (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – List of lines to write at the beginning of some sections, just after
the section header. The argument is formatted in the same way as
post_section_lines. If the argument is set to None, the lines will
be read from the “post_section_lines” key of molecule.meta.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The molecule is missing required information.

 VerMoUTH 0.9

vermouth.gmx.itp_read module

Read GROMACS .itp files.

	
class vermouth.gmx.itp_read.ITPDirector(force_field)

	Bases: vermouth.parser_utils.SectionLineParser

class for reading itp files.

	
COMMENT_CHAR = ';'

	

	
METH_DICT = {('macros',): (<function SectionLineParser._macros>, {}), ('moleculetype',): (<function ITPDirector._block>, {}), ('moleculetype', 'angle_restraints'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'angle_restraints_z'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'angles'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'atoms'): (<function ITPDirector._block_atoms>, {}), ('moleculetype', 'bonds'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'constraints'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'dihedral_restraints'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'dihedrals'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'distance_restraints'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'exclusions'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'impropers'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'orientation_restraints'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'pairs'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'pairs_nb'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'position_restraints'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'settles'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'virtual_sites1'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'virtual_sites2'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'virtual_sites3'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'virtual_sites4'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'virtual_sitesn'): (<function ITPDirector._interactions>, {})}

	

	
atom_idxs = {'angle_restraints': [slice(0, 4, None)], 'angle_restraints_z': [0, 1], 'angles': [0, 1, 2], 'bonds': [0, 1], 'constraints': [0, 1], 'dihedral_restraints': [slice(0, 4, None)], 'dihedrals': [0, 1, 2, 3], 'distance_restraints': [0, 1], 'exclusions': [slice(None, None, None)], 'orientation_restraints': [0, 1], 'pairs': [0, 1], 'pairs_nb': [0, 1], 'position_restraints': [0], 'settles': [0], 'virtual_sites1': [0], 'virtual_sites2': [0, 1, 2], 'virtual_sites3': [0, 1, 2, 3], 'virtual_sites4': [slice(0, 5, None)], 'virtual_sitesn': [0, slice(2, None, None)]}

	

	
dispatch(line)

	Looks at line to see what kind of line it is, and returns either
parse_header() if line is a section header or
vermouth.parser_utils.SectionLineParser.parse_section() otherwise.
Calls vermouth.parser_utils.SectionLineParser.is_section_header() to see
whether line is a section header or not.

	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	The method that should be used to parse line.

	Return type

	collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]

	
finalize(lineno=0)

	Called at the end of the file and checks that all pragmas are closed
before calling the parent method.

	
finalize_section(previous_section, ended_section)

	Called once a section is finished. It appends the current_links list
to the links and update the block dictionary with current_block. Thereby it
finishes reading a given section.

	Parameters

	
	previous_section (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The last parsed section.

	ended_section (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The sections that have been ended.

	
static is_pragma(line)

	
	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – A line of text.

	Returns

	True iff line is a def statement.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
parse_header(line, lineno=0)

	Parses a section header with line number lineno. Sets
vermouth.parser_utils.SectionLineParser.section
when applicable. Does not check whether line is a valid section
header.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	lineno (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	The result of calling finalize_section(), which is called
if a section ends.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the section header is unknown.

	
parse_pragma(line, lineno=0)

	Parses the beginning and end of define sections
with line number lineno. Sets attr current_meta
when applicable. Does check if ifdefs overlap.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	lineno (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	The result of calling finalize_section(), which is called
if a section ends.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If the def sections are missformatted

	
vermouth.gmx.itp_read.read_itp(lines, force_field)

	Parses lines of itp format and adds the
molecule as a block to force_field.

	Parameters

	
	lines (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of lines of an itp file

	force_field (vermouth.forcefield.ForceField) –

 VerMoUTH 0.9

vermouth.gmx.rtp module

Handle the RTP format from Gromacs.

	
vermouth.gmx.rtp.read_rtp(lines, force_field)

	Read blocks and links from a Gromacs RTP file to populate a force field

	Parameters

	
	lines (collections.abc.Iterator [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator]) – An iterator over the lines of a RTP file (e.g. a file handle, or a
list of string).

	force_field (vermouth.forcefield.ForceField) – The force field to populate in place.

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – Something in the file could not be parsed.

 VerMoUTH 0.9

vermouth.pdb package

Submodules

	vermouth.pdb.pdb module

Module contents

Provides functionality to read and write PDB files.

 VerMoUTH 0.9

vermouth.pdb.pdb module

Provides functions for reading and writing PDB files.

	
class vermouth.pdb.pdb.PDBParser(exclude=('SOL',), ignh=False, modelidx=1)

	Bases: vermouth.parser_utils.LineParser

Parser for PDB files

	
active_molecule

	The molecule/model currently being read.

	Type

	vermouth.molecule.Molecule

	
molecules

	All complete molecules read so far.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][vermouth.molecule.Molecule]

	
modelidx

	Which model to take.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	Parameters

	
	exclude (collections.abc.Container [https://docs.python.org/3/library/collections.abc.html#collections.abc.Container][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Container of residue names. Any atom that has a residue name that is in
exclude will be skipped.

	ignh (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether all hydrogen atoms should be skipped

	modelidx (int [https://docs.python.org/3/library/functions.html#int]) – Which model to take.

	
static anisou(line, lineno=0)

	Does nothing.

	
atom(line, lineno=0)

	Parse an ATOM or HETATM record.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – The line to parse. We do not check whether it starts with either
“ATOM ” or “HETATM”.

	lineno (int [https://docs.python.org/3/library/functions.html#int]) – The line number (not used).

	
static author(line, lineno=0)

	Does nothing.

	
static caveat(line, lineno=0)

	Does nothing.

	
static cispep(line, lineno=0)

	Does nothing.

	
static compnd(line, lineno=0)

	Does nothing.

	
conect(line, lineno=0)

	Parse a CONECT record. The line is stored for later processing.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – The line to parse. Should start with CONECT, but this is not checked

	lineno (int [https://docs.python.org/3/library/functions.html#int]) – The line number (not used).

	
static cryst1(line, lineno=0)

	Does nothing.

	
static dbref(line, lineno=0)

	Does nothing.

	
static dbref1(line, lineno=0)

	Does nothing.

	
static dbref2(line, lineno=0)

	Does nothing.

	
dispatch(line)

	Returns the appropriate method for parsing line. This is determined
based on the first 6 characters of line.

	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	The method to call with the line, and the line number.

	Return type

	collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]

	
do_conect()

	Apply connections to molecule based on CONECT records read from PDB file

	
end(line='', lineno=0)

	Finish parsing the molecule. active_molecule will be appended to
molecules, and a new active_molecule will be made.

	
endmdl(line='', lineno=0)

	Finish parsing the molecule. active_molecule will be appended to
molecules, and a new active_molecule will be made.

	
static expdta(line, lineno=0)

	Does nothing.

	
finalize(lineno=0)

	Finish parsing the file. Process all CONECT records found, and returns
a list of molecules.

	Parameters

	lineno (int [https://docs.python.org/3/library/functions.html#int]) – The line number (not used).

	Returns

	All molecules parsed from this file.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][vermouth.molecule.Molecule]

	
static formul(line, lineno=0)

	Does nothing.

	
static header(line, lineno=0)

	Does nothing.

	
static helix(line, lineno=0)

	Does nothing.

	
static het(line, lineno=0)

	Does nothing.

	
hetatm(line, lineno=0)

	Parse an ATOM or HETATM record.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – The line to parse. We do not check whether it starts with either
“ATOM ” or “HETATM”.

	lineno (int [https://docs.python.org/3/library/functions.html#int]) – The line number (not used).

	
static hetnam(line, lineno=0)

	Does nothing.

	
static hetsyn(line, lineno=0)

	Does nothing.

	
static jrnl(line, lineno=0)

	Does nothing.

	
static keywds(line, lineno=0)

	Does nothing.

	
static link(line, lineno=0)

	Does nothing.

	
static master(line, lineno=0)

	Does nothing.

	
static mdltyp(line, lineno=0)

	Does nothing.

	
model(line, lineno=0)

	Parse a MODEL record. If the model is not the same as modelidx,
this model will not be parsed.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – The line to parse. Should start with “MODEL “, but this is not
checked.

	lineno (int [https://docs.python.org/3/library/functions.html#int]) – The line number (not used).

	
static modres(line, lineno=0)

	Does nothing.

	
static mtrix1(line, lineno=0)

	Does nothing.

	
static mtrix2(line, lineno=0)

	Does nothing.

	
static mtrix3(line, lineno=0)

	Does nothing.

	
static nummdl(line, lineno=0)

	Does nothing.

	
static obslte(line, lineno=0)

	Does nothing.

	
static origx1(line, lineno=0)

	Does nothing.

	
static origx2(line, lineno=0)

	Does nothing.

	
static origx3(line, lineno=0)

	Does nothing.

	
parse(file_handle)

	

	
static remark(line, lineno=0)

	Does nothing.

	
static revdat(line, lineno=0)

	Does nothing.

	
static scale1(line, lineno=0)

	Does nothing.

	
static scale2(line, lineno=0)

	Does nothing.

	
static scale3(line, lineno=0)

	Does nothing.

	
static seqadv(line, lineno=0)

	Does nothing.

	
static seqres(line, lineno=0)

	Does nothing.

	
static sheet(line, lineno=0)

	Does nothing.

	
static site(line, lineno=0)

	Does nothing.

	
static source(line, lineno=0)

	Does nothing.

	
static splt(line, lineno=0)

	Does nothing.

	
static sprsde(line, lineno=0)

	Does nothing.

	
static ssbond(line, lineno=0)

	Does nothing.

	
ter(line='', lineno=0)

	Finish parsing the molecule. active_molecule will be appended to
molecules, and a new active_molecule will be made.

	
static title(line, lineno=0)

	Does nothing.

	
vermouth.pdb.pdb.get_not_none(node, attr, default)

	Returns node[attr]. If it doesn’t exists or is None, return
default.

	Parameters

	
	node (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]) –

	attr (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) –

	default – The value to return if node[attr] is either None, or does not
exist.

	Returns

	The value of node[attr] if it exists and is not None, else
default.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
vermouth.pdb.pdb.read_pdb(file_name, exclude=('SOL',), ignh=False, modelidx=1)

	Parse a PDB file to create a molecule.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file to read.

	exclude (collections.abc.Container [https://docs.python.org/3/library/collections.abc.html#collections.abc.Container][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Atoms that have one of these residue names will not be included.

	ignh (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether hydrogen atoms should be ignored.

	model (int [https://docs.python.org/3/library/functions.html#int]) – If the PDB file contains multiple models, which one to select.

	Returns

	The parsed molecules. Will only contain edges if the PDB file has
CONECT records. Either way, the molecules might be disconnected. Entries
separated by TER, ENDMDL, and END records will result in separate
molecules.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][vermouth.molecule.Molecule]

	
vermouth.pdb.pdb.write_pdb(system, path, conect=True, omit_charges=True, nan_missing_pos=False, defer_writing=True)

	Writes system to path as a PDB formatted string.

	Parameters

	
	system (vermouth.system.System) – The system to write.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file to write to.

	conect (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to write CONECT records for the edges.

	omit_charges (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether charges should be omitted. This is usually a good idea since
the PDB format can only deal with integer charges.

	nan_missing_pos (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the writing should fail if an atom does not have a position.
When set to True, atoms without coordinates will be written
with ‘nan’ as coordinates; this will cause the output file to be
invalid for most uses.
for most use.

	defer_writing (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use DeferredFileWriter for writing data

See also

:func:write_pdb_string

	
vermouth.pdb.pdb.write_pdb_string(system, conect=True, omit_charges=True, nan_missing_pos=False)

	Describes system as a PDB formatted string. Will create CONECT records
from the edges in the molecules in system iff conect is True.

	Parameters

	
	system (vermouth.system.System) – The system to write.

	conect (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to write CONECT records for the edges.

	omit_charges (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether charges should be omitted. This is usually a good idea since
the PDB format can only deal with integer charges.

	nan_missing_pos (bool [https://docs.python.org/3/library/functions.html#bool]) – Wether the writing should fail if an atom does not have a position.
When set to True, atoms without coordinates will be written
with ‘nan’ as coordinates; this will cause the output file to be
invalid for most uses.

	Returns

	The system as PDB formatted string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

 VerMoUTH 0.9

vermouth.processors package

Submodules

	vermouth.processors.add_molecule_edges module

	vermouth.processors.annotate_mut_mod module

	vermouth.processors.apply_posres module

	vermouth.processors.apply_rubber_band module

	vermouth.processors.attach_mass module

	vermouth.processors.average_beads module

	vermouth.processors.canonicalize_modifications module

	vermouth.processors.do_links module

	vermouth.processors.do_mapping module

	vermouth.processors.go_vs_includes module

	vermouth.processors.gro_reader module

	vermouth.processors.locate_charge_dummies module

	vermouth.processors.make_bonds module

	vermouth.processors.merge_all_molecules module

	vermouth.processors.merge_chains module

	vermouth.processors.name_moltype module

	vermouth.processors.pdb_reader module

	vermouth.processors.processor module

	vermouth.processors.quote module

	vermouth.processors.rename_modified_residues module

	vermouth.processors.repair_graph module

	vermouth.processors.set_molecule_meta module

	vermouth.processors.sort_molecule_atoms module

	vermouth.processors.tune_cystein_bridges module

Module contents

Provides Processors, VerMoUTH’s work horses.

 VerMoUTH 0.9

vermouth.processors.add_molecule_edges module

Processor adding edges between molecules.

	
class vermouth.processors.add_molecule_edges.AddMoleculeEdgesAtDistance(threshold, templates_from, templates_to, attribute='position', min_edges=0)

	Bases: vermouth.processors.processor.Processor

Processor that adds edges within and between molecules.

The processor adds edges between atoms, within or between molecules, when
the atoms are part of the selections provided for each end of the edges,
and the atoms are closer than a given threshold.

	Parameters

	
	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Distance threshold in nanometers under which to create an edge.

	templates_from (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of node templates to select the atoms at one end of the edges.

	templates_to (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of node template to select the atoms at the other end of the edges.

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the attribute under which are stores the coordinates.

See also

vermouth.molecule.attributes_match

	
run_system(system)

	Run the processor on the system.

	
class vermouth.processors.add_molecule_edges.MergeNucleicStrands(threshold=0.3, templates_donnors=({'resname': <Choice at 7ff4f3a5d4d0 value=['DA', 'DA3', 'DA5']>, 'atomname': <Choice at 7ff4f3a5d510 value=['C2', 'N6']>}, {'resname': <Choice at 7ff4f3a5d590 value=['DG', 'DG3', 'DG5']>, 'atomname': <Choice at 7ff4f3a5d5d0 value=['N1', 'N2']>}, {'resname': <Choice at 7ff4f3a5d610 value=['DC', 'DC3', 'DC5']>, 'atomname': 'N4'}, {'resname': <Choice at 7ff4f3a5d750 value=['DT', 'DT3', 'DT5']>, 'atomname': 'N3'}), templates_acceptors=({'resname': <Choice at 7ff4f3a61350 value=['DA', 'DA3', 'DA5']>, 'atomname': 'N1'}, {'resname': <Choice at 7ff4f3a613d0 value=['DG', 'DG3', 'DG5']>, 'atomname': 'O6'}, {'resname': <Choice at 7ff4f3a61410 value=['DC', 'DC3', 'DC5']>, 'atomname': <Choice at 7ff4f3a61450 value=['N3', 'O2']>}, {'resname': <Choice at 7ff4f3a61490 value=['DT', 'DT3', 'DT5']>, 'atomname': <Choice at 7ff4f3a614d0 value=['O2', 'O4']>}), attribute='position')

	Bases: vermouth.processors.add_molecule_edges.AddMoleculeEdgesAtDistance

Add edges between complementary nucleic acid strands.

By default, the edges are added in place of the hydrogen bonds between
complementary bases.

	Parameters

	
	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Distance threshold in nanometers under which to create an edge.

	templates_donnors (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of templates describing hydrogen donnors.

	templates_acceptors (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of templates describing hydrogen acceptors.

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the attribute under which are store the node coordinates.

 VerMoUTH 0.9

vermouth.processors.annotate_mut_mod module

Provides a processor that annotates a molecule with desired mutations and
modifications.

	
class vermouth.processors.annotate_mut_mod.AnnotateMutMod(modifications=None, mutations=None)

	Bases: vermouth.processors.processor.Processor

Annotates residues to have the required ‘modification’ and ‘mutation’
attributes on all nodes.

	
modifications

	
	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
mutations

	
	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]]

See also

annotate_modifications()

	
run_molecule(molecule)

	

	
vermouth.processors.annotate_mut_mod.annotate_modifications(molecule, modifications, mutations)

	Annotate nodes in molecule with the desired modifications and mutations

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) –

	modifications (list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The modifications to apply. The first element is a dictionary contain
the attributes a residue has to fulfill. It can contain the elements
‘chain’, ‘resname’ and ‘resid’. The second element is the modification
that should be applied.

	mutations (list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The mutations to apply. The first element is a dictionary contain
the attributes a residue has to fulfill. It can contain the elements
‘chain’, ‘resname’ and ‘resid’. The second element is the mutation that
should be applied.

	Raises

	NameError [https://docs.python.org/3/library/exceptions.html#NameError] – When a modification is not recognized.

	
vermouth.processors.annotate_mut_mod.parse_residue_spec(resspec)

	Parse a residue specification: [<chain>-][<resname>][[#]<resid>] where
resid is /[0-9]+/.
If resname ends in a number and a resid is also specified, the # separator
is required.
Returns a dictionary with keys ‘chain’, ‘resname’, and ‘resid’ for the
fields that are specified. Resid will be an int.

	Parameters

	resspec (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
vermouth.processors.annotate_mut_mod.residue_matches(resspec, residue_graph, res_idx)

	Returns True iff resspec describes residue_graph.nodes[res_idx]. The
‘resname’s nter and cter match the residues with a degree of 1 and
with the lowest and highest residue numbers respectively.

	Parameters

	
	resspec (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Attributes that must be present in the residue node. ‘resname’ is
treated specially as described above.

	residue_graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – A graph with one node per residue.

	res_idx (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – A node index in residue_graph.

	Returns

	Whether resspec describes the node res_idx in residue_graph.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 VerMoUTH 0.9

vermouth.processors.apply_posres module

	
class vermouth.processors.apply_posres.ApplyPosres(selector, force_constant, functype=1, ifdef='POSRES')

	Bases: vermouth.processors.processor.Processor

	
run_molecule(molecule)

	

	
vermouth.processors.apply_posres.apply_posres(molecule, selector, force_constant, functype=1, ifdef='POSRES')

	

 VerMoUTH 0.9

vermouth.processors.apply_rubber_band module

Provides a processor that adds a rubber band elastic network.

	
class vermouth.processors.apply_rubber_band.ApplyRubberBand(lower_bound, upper_bound, decay_factor, decay_power, base_constant, minimum_force, res_min_dist=None, bond_type=None, selector=<function select_backbone>, bond_type_variable='elastic_network_bond_type', res_min_dist_variable='elastic_network_res_min_dist', domain_criterion=<function always_true>)

	Bases: vermouth.processors.processor.Processor

Add an elastic network to a system between particles fulfilling the
following criteria:

	They must be close enough together in space

	They must be separated far enough in graph space

	They must be either in the same chain/molecule/system

	They must be selected by selector

	The resulting elastic bond must be stiff enough

	
selector

	Selection function.

	Type

	collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]

	
lower_bound

	The minimum length for a bond to be added, expressed in
nanometers.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
upper_bound

	The maximum length for a bond to be added, expressed in
nanometers.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
decay_factor

	Parameter for the decay function.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
decay_power

	Parameter for the decay function.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
base_constant

	The base force constant for the bonds in \(kJ.mol^{-1}.nm^{-2}\).
If ‘decay_factor’ or ‘decay_power’ is set to 0, then it will be the
used force constant.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
minimum_force

	Minimum force constant in \(kJ.mol^{-1}.nm^{-2}\) under which bonds
are not kept.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
bond_type

	Gromacs bond function type to apply to the elastic network bonds.

	Type

	int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]

	
bond_type_variable

	If bond_type is not given, it will be taken from the force field, using
this variable name.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
domain_criterion

	Function to establish if two atoms are part of the same domain. Elastic
bonds are only added within a domain. By default, all the atoms in
the molecule are considered part of the same domain. The function
expects a graph (e.g. a Molecule) and two
atom node keys as argument and returns True if the two atoms are
part of the same domain; returns False otherwise.

	Type

	collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]

	
res_min_dist

	Minimum separation between two atoms for a bond to be kept.
Bonds are kept is the separation is greater or equal to the value
given.

	Type

	int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]

	
res_min_dist_variable

	If res_min_dist is not given it will be taken from the force field using
this variable name.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

See also

apply_rubber_band()

	
run_molecule(molecule)

	

	
vermouth.processors.apply_rubber_band.always_true(*args, **kwargs)

	Returns True whatever the arguments are.

	
vermouth.processors.apply_rubber_band.apply_rubber_band(molecule, selector, lower_bound, upper_bound, decay_factor, decay_power, base_constant, minimum_force, bond_type, domain_criterion, res_min_dist)

	Adds a rubber band elastic network to a molecule.

The elastic network is applied as bounds between the atoms selected by the
function declared with the ‘selector’ argument. The equilibrium length for
the bonds is measured from the coordinates in the molecule, the force
constant is computed from the base force constant and an optional decay
function.

The decay function for the force constant is defined as:

\[\exp^{-r(d - s)^p}\]

where \(r\) is the decay rate given by the ‘decay_factor’ argument,
\(p\) is the decay power given by ‘decay_power’, \(s\) is a shift
given by ‘lower_bound’, and \(d\) is the distance between the two atoms
in the molecule. If the rate or the power are set to 0, then the decay
function does not modify the force constant.

The ‘selector’ argument takes a callback that accepts a atom dictionary and
returns True if the atom match the conditions to be kept.

Only nodes that are in the same domain can be connected by the elastic
network. The ‘domain_criterion’ argument accepts a callback that determines
if two nodes are in the same domain. That callback accepts a graph and two
node keys as argument and returns whether or not the nodes are in the same
domain as a boolean.

	Parameters

	
	molecule (vermouth.molecule.Molecule) – The molecule to which apply the elastic network. The molecule is
modified in-place.

	selector (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) – Selection function.

	lower_bound (float [https://docs.python.org/3/library/functions.html#float]) – The minimum length for a bond to be added, expressed in
nanometers.

	upper_bound (float [https://docs.python.org/3/library/functions.html#float]) – The maximum length for a bond to be added, expressed in
nanometers.

	decay_factor (float [https://docs.python.org/3/library/functions.html#float]) – Parameter for the decay function.

	decay_power (float [https://docs.python.org/3/library/functions.html#float]) – Parameter for the decay function.

	base_constant (float [https://docs.python.org/3/library/functions.html#float]) – The base force constant for the bonds in \(kJ.mol^{-1}.nm^{-2}\).
If ‘decay_factor’ or ‘decay_power’ is set to 0, then it will be the
used force constant.

	minimum_force (float [https://docs.python.org/3/library/functions.html#float]) – Minimum force constant in \(kJ.mol^{-1}.nm^{-2}\) under which bonds
are not kept.

	bond_type (int [https://docs.python.org/3/library/functions.html#int]) – Gromacs bond function type to apply to the elastic network bonds.

	domain_criterion (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) – Function to establish if two atoms are part of the same domain. Elastic
bonds are only added within a domain. By default, all the atoms in
the molecule are considered part of the same domain. The function
expects a graph (e.g. a Molecule) and two atom node keys as
argument and returns True if the two atoms are part of the same
domain; returns False otherwise.

	res_min_dist (int [https://docs.python.org/3/library/functions.html#int]) – Minimum separation between two atoms for a bond to be kept.
Bonds are kept is the separation is greater or equal to the value
given.

	
vermouth.processors.apply_rubber_band.are_connected(graph, left, right, separation)

	True if the nodes are at most ‘separation’ nodes away.

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The graph/molecule to work on.

	left – One node key from the graph.

	right – One node key from the graph.

	separation (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of nodes in the shortest path between two nodes of
interest for these two nodes to be considered connected. Must be >= 0.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.processors.apply_rubber_band.build_connectivity_matrix(graph, separation, node_to_idx, selected_nodes)

	Build a connectivity matrix based on the separation between nodes in a graph.

The connectivity matrix is a symmetric boolean matrix where cells contain
True if the corresponding atoms are connected in the graph and
separated by less or as much nodes as the given ‘separation’ argument.

In the following examples, the separation between A and B is 0, 1, and 2.
respectively:

`
A - B
A - X - B
A - X - X - B
`

Note that building the connectivity matrix with a separation of 0 is the
same as building the adjacency matrix.

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The graph/molecule to work on.

	separation (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of nodes in the shortest path between two nodes of
interest for these two nodes to be considered connected. Must be >= 0.

	selected_nodes (collections.abc.Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection]) – A list of nodes to work on.

	Returns

	A boolean matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
vermouth.processors.apply_rubber_band.build_pair_matrix(graph, criterion, idx_to_node, selected_nodes)

	Build a boolean matrix telling if a pair of nodes fulfil a criterion.

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The graph/molecule to work on.

	criterion (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) – A function that determines if a pair of nodes fulfill the criterion.
It takes a graph and two node keys as arguments and returns a boolean.

	selected_nodes (collections.abc.Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection]) – A list of nodes to work on.

	Returns

	A boolean matrix.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
vermouth.processors.apply_rubber_band.compute_decay(distance, shift, rate, power)

	Compute the decay function of the force constant as function to the distance.

The decay function for the force constant is defined as:

\[\exp^{-r(d - s)^p}\]

where \(r\) is the decay rate given by the ‘rate’ argument,
\(p\) is the decay power given by ‘power’, \(s\) is a shift
given by ‘shift’, and \(d\) is the distance between the two atoms given
in ‘distance’. If the rate or the power are set to 0, then the decay
function does not modify the force constant.

The ‘distance’ argument can be a scalar or a numpy array. If it is an
array, then the returned value is an array of decay factors with the same
shape as the input.

	
vermouth.processors.apply_rubber_band.compute_force_constants(distance_matrix, lower_bound, upper_bound, decay_factor, decay_power, base_constant, minimum_force)

	Compute the force constant of an elastic network bond.

The force constant can be modified with a decay function, and it can be
bounded with a minimum threshold, or a distance upper and lower bonds.

	
vermouth.processors.apply_rubber_band.make_same_region_criterion(regions)

	Returns True is the nodes are part of the same region.

Nodes are considered part of the same region if their value
under the “resid” attribute are within the same residue range.
By default the resids of the input file are used (i.e. “_old_resid”
attribute).

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – A graph the nodes are part of.

	left – A node key in ‘graph’.

	right – A node key in ‘graph’.

	regions – [(resid_start_1,resid_end_1),(resid_start_2,resid_end_2),…] resid_start and resid_end are included)

	Returns

	True if the nodes are part of the same region.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.processors.apply_rubber_band.same_chain(graph, left, right)

	Returns True is the nodes are part of the same chain.

Nodes are considered part of the same chain if they both have the same value
under the “chain” attribute, or if neither of the 2 nodes have that attribute.

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – A graph the nodes are part of.

	left – A node key in ‘graph’.

	right – A node key in ‘graph’.

	Returns

	True if the nodes are part of the same chain.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.processors.apply_rubber_band.self_distance_matrix(coordinates)

	Compute a distance matrix between points in a selection.

Notes

This function does not account for periodic boundary conditions.

	Parameters

	coordinates (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Coordinates of the points in the selection. Each row must correspond
to a point and each column to a dimension.

	Returns

	

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

 VerMoUTH 0.9

vermouth.processors.attach_mass module

Provides a processor that assigns a mass attribute to every node in a
molecule based on it’s element.

	
class vermouth.processors.attach_mass.AttachMass(attribute='mass')

	Bases: vermouth.processors.processor.Processor

	
run_molecule(molecule)

	

	
vermouth.processors.attach_mass.attach_mass(molecule, attribute='mass')

	For every atom in molecule look up it’s element in ATOM_MASSES, and
assign that value to attribute.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The molecule to process. Is modified in-place.

	attribute (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The attribute the mass is assigned to.

 VerMoUTH 0.9

vermouth.processors.average_beads module

Provides a processor that generates positions for nodes based on the weighted
average of the positions of the atoms they are constructed from.

	
class vermouth.processors.average_beads.DoAverageBead(ignore_missing_graphs=False, weight=None)

	Bases: vermouth.processors.processor.Processor

	
run_molecule(molecule)

	

	
vermouth.processors.average_beads.do_average_bead(molecule, ignore_missing_graphs=False, weight=None)

	Set the position of the particles to the mean of the underlying atoms.

This requires the atoms to have a ‘graph’ attributes. By default, a
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised if any atom in the molecule is missing that
‘graph’ attribute. This behavior can be changed by setting the
‘ignore_missing_graphs’ argument to True, then the average positions are
computed, but the atoms without a ‘graph’ attribute are skipped.

The average is weighted using the ‘mapping_weights’ atom attribute. If the
‘mapping_weights’ attribute is set, it has to be a dictionary with the
atomname from the underlying graph as keys, and the weights as values.
Atoms without a weight set use a default weight of 1.

The average can also be weighted using an arbitrary node attribute by
giving the attribute name with the weight keyword argument. This can be
used to get the center of mass for instance; assuming the mass of the
underlying atoms is stored under the “mass” attribute, setting weight to
“mass” will place the bead at the center of mass. By default, weight is
set to None and the center of geometry is used.

The atoms in the underlying graph must have a position. If they do not,
they are ignored from the average.

	Parameters

	
	molecule (vermouth.molecule.Molecule) – The molecule to update. The attribute position of the particles
is updated on place. The nodes of the molecule must have an attribute
graph that contains the subgraph of the initial molecule.

	ignore_missing_graphs (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, skip the atoms that do not have a graph attribute; else
fail if not all the atoms in the molecule have a graph attribute.

	weight (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The name of the attribute used to weight the position of the node. The
attribute is read from the underlying atoms.

 VerMoUTH 0.9

vermouth.processors.canonicalize_modifications module

Provides a Processor that identifies unexpected atoms such as PTMs and
protonations, and canonicalizes their attributes based on modifications known
in the forcefield.

	
class vermouth.processors.canonicalize_modifications.CanonicalizeModifications

	Bases: vermouth.processors.processor.Processor

Identifies all modifications in a molecule and corrects their atom names.

See also

fix_ptm()

	
run_molecule(molecule)

	

	
vermouth.processors.canonicalize_modifications.allowed_ptms(residue, res_ptms, known_ptms)

	Finds all PTMs in known_ptms which might be relevant for residue.

	Parameters

	
	residue (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) –

	res_ptms (list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][set [https://docs.python.org/3/library/stdtypes.html#set], set [https://docs.python.org/3/library/stdtypes.html#set]]]) – As returned by find_PTM_atoms.
Currently not used.

	known_ptms (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]]) –

	Yields

	tuple[networkx.Graph, networkx.isomorphism.GraphMatcher] – All graphs in known_ptms which are subgraphs of residue.

	
vermouth.processors.canonicalize_modifications.find_ptm_atoms(molecule)

	Finds all atoms in molecule that have the node attribute PTM_atom set
to a value that evaluates to True. molecule will be traversed
starting at these atoms until all marked atoms are visited such that they
are identified per “branch”, and for every branch the anchor node is known.
The anchor node is the node(s) which are not PTM atoms and share an edge
with the traversed branch.

	Parameters

	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) –

	Returns

	[({ptm atom indices}, {anchor indices}), ...]. Ptm atom indices are
connected, and are connected to the rest of molecule via anchor
indices.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][set [https://docs.python.org/3/library/stdtypes.html#set], set [https://docs.python.org/3/library/stdtypes.html#set]]]

	
vermouth.processors.canonicalize_modifications.fix_ptm(molecule)

	Canonizes all PTM atoms in molecule, and labels the relevant residues with
which PTMs were recognized. Modifies molecule such that atom names of
PTM atoms are corrected, and the relevant residues have been labeled with
which PTMs were recognized.

	Parameters

	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – Must not have missing atoms, and atom names must be correct. Atoms which
could not be recognized must be labeled with the attribute
PTM_atom=True.

	
vermouth.processors.canonicalize_modifications.identify_ptms(residue, residue_ptms, known_ptms)

	Identifies all PTMs in known_PTMs necessary to describe all PTM atoms in
residue_ptms. Will take PTMs such that all PTM atoms in residue
will be covered by applying PTMs from known_PTMs in order.
Nodes in residue must have correct atomname attributes, and may not
be missing. In addition, every PTM in must be anchored to a non-PTM atom.

	Parameters

	
	residue (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The residues involved with these PTMs. Need not be connected.

	residue_ptms (list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][set [https://docs.python.org/3/library/stdtypes.html#set], set [https://docs.python.org/3/library/stdtypes.html#set]]]) – As returned by find_PTM_atoms, but only those relevant for
residue.

	known_PTMs (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph], networkx.isomorphism.GraphMatcher [https://networkx.org/documentation/latest/reference/algorithms/isomorphism.vf2.html#module-networkx.algorithms.isomorphism.isomorphvf2]]]) – The nodes in the graph must have the PTM_atom attribute (True or
False). It should be True for atoms that are not part of the PTM
itself, but describe where it is attached to the molecule.
In addition, its nodes must have the atomname attribute, which will
be used to recognize where the PTM is anchored, or to correct the
atom names. Lastly, the nodes may have a replace attribute, which
is a dictionary of {attribute_name: new_value} pairs. The special
case here is if attribute_name is 'atomname' and new_value is
None: in this case the node will be removed.
Lastly, the graph (not its nodes) needs a ‘name’ attribute.

	Returns

	All PTMs from known_PTMs needed to describe the PTM atoms in
residue along with a dict of node correspondences. The order of
known_PTMs is preserved.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph], dict [https://docs.python.org/3/library/stdtypes.html#dict]]]

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – Not all PTM atoms in residue can be covered with known_PTMs.

	
vermouth.processors.canonicalize_modifications.ptm_node_matcher(node1, node2)

	Returns True iff node1 and node2 should be considered equal. This means
they are both either marked as PTM_atom, or not. If they both are PTM
atoms, the elements need to match, and otherwise, the atom names must
match.

 VerMoUTH 0.9

vermouth.processors.do_links module

	
class vermouth.processors.do_links.DoLinks

	Bases: vermouth.processors.processor.Processor

Apply Links, taken from a molecule’s force field, to the molecule.

	
run_molecule(molecule)

	

	
vermouth.processors.do_links.match_link(molecule, link)

	

	
vermouth.processors.do_links.match_order(order1, resid1, order2, resid2)

	Check if two residues match the order constraints.

The order can be:

	an integer

	It is then the expected distance in resid with a reference residue.

	a series of >

	This indicates that the residue must have a larger resid than a
reference residue. Multiple atoms with the same number of > are
expected to be part of the same residue. The more > are in the serie,
the further away the residue is expected to be from the reference, so a
residue with >> is expected to have a greater resid than a residue with
>.

	a series of <

	Same as a series of >, but for smaller resid.

	a series of *

	This indicates a different residue than the reference, but without a
specified order. As for the > or the <, atoms with the same number of *
are expected to be part of the same residue.

The comparison matrix can be sumerized as follow, with 0 being the
reference residue, n being an integer. In the matrix, a ? means that the
result depends on the comparison of the actual numbers, a ! means that the
comparison should not be considered, and / means that the resids must be
different. The rows correspond to the order at the left of the comparison
(order1 argument), while the columns correspond to the order at the right
of it (order2 argument).

	
	>

	>>

	<

	<<

	n

	0

	*

	**

	>

	=

	<

	>

	>

	!

	>

	!

	!

	>>

	>

	=

	>

	>

	!

	>

	!

	!

	<

	<

	<

	=

	>

	!

	<

	!

	!

	<<

	<

	<

	<

	=

	!

	<

	!

	!

	n

	!

	!

	!

	!

	?

	?

	!

	!

	0

	<

	<

	>

	>

	?

	=

	/

	/

	*

	!

	!

	!

	!

	!

	/

	=

	/

	**

	!

	!

	!

	!

	!

	/

	/

	=

	Parameters

	
	order1 (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The order attribute of the residue on the left of the comparison.

	resid1 (int [https://docs.python.org/3/library/functions.html#int]) – The residue id of the residue on the left of the comparison.

	order2 (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The order attribute of the residue on the right of the comparison.

	resid2 (int [https://docs.python.org/3/library/functions.html#int]) – The residue id of the residue on the right of the comparison.

	Returns

	True if the conditions match.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised if the order arguments do not follow the expected format.

 VerMoUTH 0.9

vermouth.processors.do_mapping module

Provides a processor that can perform a resolution transformation on a
molecule.

	
class vermouth.processors.do_mapping.DoMapping(mappings, to_ff, delete_unknown=False, attribute_keep=(), attribute_must=(), attribute_stash=())

	Bases: vermouth.processors.processor.Processor

Processor for performing a resolution transformation from one force field to
another.

This processor will create new Molecules by stitching together Blocks from
the target force field, as dictated by the available mappings.
Fragments/atoms/residues/modifications for which no mapping is available
will not be represented in the resulting molecule.

The resulting molecules will have intra-block edges and interactions as
specified in the blocks from the target force field. Inter-block edges will
be added based on the connectivity of the original molecule, but no
interactions will be added for those.

	
mappings

	{ff_name: {ff_name: {block_name: (mapping, weights, extra)}}}
A collection of mappings, as returned by e.g.
read_mapping_directory().

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]]]

	
to_ff

	The force field to map to.

	Type

	vermouth.forcefield.ForceField

	
delete_unknown

	Not currently used

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
attribute_keep

	The attributes that will always be transferred from the input molecule
to the produced graph.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
attribute_must

	The attributes that the nodes in the output graph must have. If
they’re not provided by the mappings/blocks they’re taken from
the original molecule.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
attribute_stash

	The attributes that will always be transferred from the input molecule
to the produced graph, but prefixed with _old_.Thus they are new attributes
and are not conflicting with already defined attributes.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]

See also

do_mapping()

	
run_molecule(molecule)

	

	
run_system(system)

	

	
vermouth.processors.do_mapping.apply_block_mapping(match, molecule, graph_out, mol_to_out, out_to_mol)

	Performs a mapping operation for a “block”. match is a tuple of 3
elements that describes what nodes in molecule should correspond to
a vermouth.molecule.Block that should be added to graph_out, and
any atoms that should be used a references.
Add the required vermouth.molecule.Block to graph_out, and
updates mol_to_out and out_to_mol in-place.

	Parameters

	
	match –

	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The original molecule

	graph_out (vermouth.molecule.Molecule) – The newly created graph that describes molecule at a different
resolution.

	mol_to_out (dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], float [https://docs.python.org/3/library/functions.html#float]]]) – A dict mapping nodes in molecule to nodes in graph_out with the
associated weights.

	out_to_mol (dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], float [https://docs.python.org/3/library/functions.html#float]]]) – A dict mapping nodes in graph_out to nodes in molecule with the
associated weights.

	Returns

	
	set – A set of all overlapping nodes that were already mapped before.

	set – A set of none-to-one mappings. I.e. nodes that were created without
nodes mapping to them.

	dict – A dict of reference atoms, mapping graph_out nodes to nodes in
molecule.

	
vermouth.processors.do_mapping.apply_mod_mapping(match, molecule, graph_out, mol_to_out, out_to_mol)

	Performs the mapping operation for a modification.

	Parameters

	
	match –

	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The original molecule

	graph_out (vermouth.molecule.Molecule) – The newly created graph that describes molecule at a different
resolution.

	mol_to_out (dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], float [https://docs.python.org/3/library/functions.html#float]]]) – A dict mapping nodes in molecule to nodes in graph_out with the
associated weights.

	out_to_mol (dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], float [https://docs.python.org/3/library/functions.html#float]]]) – A dict mapping nodes in graph_out to nodes in molecule with the
associated weights.

	Returns

	
	dict[str, dict[tuple, vermouth.molecule.Link]] – A dict of all modifications that have been applied by this modification
mapping operations. Maps interaction type to involved atoms to the
modification responsible.

	dict – A dict of reference atoms, mapping graph_out nodes to nodes in
molecule.

	
vermouth.processors.do_mapping.attrs_from_node(node, attrs)

	Helper function that applies a “replace” operations on the node if
required, and then returns a dict of the attributes listed in attrs.

	Parameters

	
	node (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	attrs (collections.abc.Container [https://docs.python.org/3/library/collections.abc.html#collections.abc.Container]) – Attributes that should be in the output.

	Returns

	

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
vermouth.processors.do_mapping.build_graph_mapping_collection(from_ff, to_ff, mappings)

	Function that produces a collection of vermouth.map_parser.Mapping
objects.
Hereby deprecated.

	Parameters

	
	from_ff (vermouth.forcefield.ForceField) – Origin force field.

	to_ff (vermouth.forcefield.ForceField) – Destination force field.

	mappings (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], vermouth.map_parser.Mapping]]) – All known mappings

	Returns

	A collection of mappings that map from from_ff to to_ff.

	Return type

	collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]

	
vermouth.processors.do_mapping.cover(to_cover, options)

	Implements a recursive backtracking algorithm to cover all elements of
to_cover with the elements from options that have the lowest index.
In this context “to cover” means that all items in an element of options
must be in to_cover. Elements in to_cover can only be covered once.

	Parameters

	
	to_cover (collections.abc.MutableSet [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSet]) – The items that should be covered.

	options (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][collections.abc.MutableSet [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSet]]) – The elements that can be used to cover to_cover. All items in an
element of options must be present in to_cover to qualify.

	Returns

	None if no covering can be found, or the list of items from options
with the lowest indices that exactly covers to_cover.

	Return type

	None [https://docs.python.org/3/library/constants.html#None] or list [https://docs.python.org/3/library/stdtypes.html#list]

	
vermouth.processors.do_mapping.do_mapping(molecule, mappings, to_ff, attribute_keep=(), attribute_must=(), attribute_stash=())

	Creates a new Molecule in force field to_ff
from molecule, based on mappings. It does this by doing a subgraph
isomorphism of all blocks in mappings and molecule. Will issue warnings
if there’s atoms not contributing to the new molecule, or if there’s
overlapping blocks.
Node attributes in the new molecule will come from the blocks constructing
it, except for those in attribute_keep, which lists the attributes that
will be kept from molecule.

	Parameters

	
	molecule (Molecule) – The molecule to transform.

	mappings (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]]]) – {ff_name: {ff_name: {block_name: (mapping, weights, extra)}}}
A collection of mappings, as returned by e.g.
read_mapping_directory().

	to_ff (ForceField) – The force field to transform to.

	attribute_keep (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – The attributes that will always be transferred from molecule to the
produced graph.

	attribute_must (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – The attributes that the nodes in the output graph must have. If
they’re not provided by the mappings/blocks they’re taken from
molecule.

	attribute_stash (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that will always be transferred from the input molecule
to the produced graph, but prefixed with _old_.Thus they are new attributes
and are not conflicting with already defined attributes.

	Returns

	A new molecule, created by transforming molecule to to_ff according
to mappings.

	Return type

	Molecule

	
vermouth.processors.do_mapping.edge_matcher(graph1, graph2, node11, node12, node21, node22)

	Checks whether the resids for node11 and node12 in graph1 are the same, and
whether that’s also true for node21 and node22 in graph2.

	Parameters

	
	graph1 (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) –

	graph2 (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) –

	node11 (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – A node key in graph1.

	node12 (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – A node key in graph1.

	node21 (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – A node key in graph2.

	node22 (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – A node key in graph2.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.processors.do_mapping.get_mod_mappings(mappings)

	Returns a dict of all known modification mappings.

	Parameters

	mappings (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][vermouth.map_parser.Mapping]) – All known mappings.

	Returns

	All mappings that describe a modification mapping.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]], vermouth.map_parser.Mapping]

	
vermouth.processors.do_mapping.modification_matches(molecule, mappings)

	Returns a minimal combination of modification mappings and where they
should be applied that describes all modifications in molecule.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The molecule whose modifications should be treated. Modifications are
described by the ‘modifications’ node attribute.

	mappings (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][vermouth.map_parser.Mapping]) – All known mappings.

	Returns

	
	A list with the following items:

	
	Dict describing the correspondence of node keys in molecule to

	node keys in the modification.

The modification.

	Dict with all reference atoms, mapping modification nodes to

	nodes in molecule.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], vermouth.molecule.Link, dict [https://docs.python.org/3/library/stdtypes.html#dict]]]

	
vermouth.processors.do_mapping.node_matcher(node1, node2)

	Checks whether nodes should be considered equal for isomorphism. Takes all
attributes in node2 into account, except for the attributes “atype”,
“charge”, “charge_group”, “resid”, “replace”, and “_old_atomname”.

	Parameters

	
	node1 (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	node2 (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.processors.do_mapping.node_should_exist(modification, node_idx)

	Returns True if the node with index node_idx in modification should
already exist in the parent molecule.

	Parameters

	
	modification (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) –

	node_idx (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The key of a node in modification.

	Returns

	True iff the node node_idx in modification should already exist in
the parent molecule.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.processors.do_mapping.ptm_resname_match(mol_node, map_node)

	As node_matcher(), except that empty resname and false PTM_atom
attributes from node2 are removed.

 VerMoUTH 0.9

vermouth.processors.go_vs_includes module

Add the include statements and the virtual sites for Virtual Site Go model.

The VirtualGoSite model allows to stabilize the ternary structure of Martini
proteins by applying Go potentials maintaining the contacts within the
backbone. The Go potentials are not applied on the backbone beads directly,
instead, they are applied on virtual sites overlapping with the backbone.

The processor defined in this module does not generate the Go potentials.
Instead, they the potential is generated by a third party program. The third
party program generate the interaction matrix for the Go potentials, and the
exclusions as ITP files to be included in the right place in the protein ITP
file. The processor adds an include statement at the end of the [exclusions
] section. Would the third party program need the addition of other include
statements, they can be added by adjusting the sections argument of the
processor. To incorporate the include statements, the processor adds the
required lines in the “post_section_lines” meta attribute of the molecules.
This meta attribute is read by vermouth.gmx.itp.write_molecule_itp(). The
include files are called “<moltype>_<section>_VirtGoSite.itp”.

In addition of writing the include statements, the processor adds virtual sites
on top of the backbone beads. The virtual sites are added at the end of the
molecule, they share the residue name, residue id, chain, and position of the
underlying backbone bead. They are also added in the [virtual_sitesn]
section.

	
class vermouth.processors.go_vs_includes.GoVirtIncludes(sections=('exclusions',))

	Bases: vermouth.processors.processor.Processor

Add the include statements and the virtual sites for Virtual Site Go model.

See vermouth.processors.go_vs_includes for more details.

Every molecule must have a moltype name under the “moltype” key of the
molecule meta.

	Parameters

	sections (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The sections to which to add an include statement.

See also

	NameMolType

	Assign molecule type names to the molecules in a system.

add_virtual_sites()

	
run_molecule(molecule)

	

	
vermouth.processors.go_vs_includes.add_virtual_sites(molecule, prefix, backbone='BB', atomname='CA', charge=0)

	Add the virtual sites for GoMartini in the molecule.

One virtual site is added per backbone bead of the the Martini protein.
Each virtual site copies the resid, resname, and chain of the backbone
bead. It also copies the reference to the position array, so the virtual
site position follows if the backbone bead is translated. The virtual sites
are added after all the other atoms of the molecule, each in its own
charge group, with “CA” as atomname, and a charge of 0. The atomname and
charge can be set with the atomname and charge argument, respectively.

The bead type of the virtual sites is names “<prefix>_<resid>”. Where
prefix is provided as an argument of the function, and is expected to be
the molecule type name.

	Parameters

	
	molecule (vermouth.molecule.Molecule) – The molecule to augment with virtual sites.

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – The prefix to use for bead type names. Usually the molecule type name.

	backbone (str [https://docs.python.org/3/library/stdtypes.html#str]) – The atomname of the backbone beads.

	atomname (str [https://docs.python.org/3/library/stdtypes.html#str]) – The atomname of the virtual sites.

	charge (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The charge of the virtual sites.

 VerMoUTH 0.9

vermouth.processors.gro_reader module

Provides a processor that reads a GRO file.

See also

vermouth.gmx.gro

	
class vermouth.processors.gro_reader.GROInput(filename, exclude=(), ignh=False)

	Bases: vermouth.processors.processor.Processor

	
run_system(system)

	

 VerMoUTH 0.9

vermouth.processors.locate_charge_dummies module

Provides a processor that generates positions for every charge dummy.

	
class vermouth.processors.locate_charge_dummies.LocateChargeDummies(attribute_tag='charge_dummy')

	Bases: vermouth.processors.processor.Processor

	
run_molecule(molecule)

	

	
vermouth.processors.locate_charge_dummies.colinear_pair()

	Build two points on a line around the origin at a random orientation.

	
vermouth.processors.locate_charge_dummies.fibonacci_sphere(n_samples)

	Place points near-evenly distributed on a sphere.

Use the Fibonacci sphere algorithm to place ‘n_samples’ points at the
surface of a sphere of radius 1, centered on the origin.

	Parameters

	n_samples (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to place.

	Returns

	3D coordinates of the points.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
vermouth.processors.locate_charge_dummies.find_anchor(molecule, node_key, attribute_tag='charge_dummy')

	Find the non-dummy bead to which a charge dummy is anchored.

Each charge dummy has to be attached to exactly one non-dummy atom. This
function returns the node key for that non-dummy atom.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The molecule to work on.

	node_key – The node key of the charge dummy.

	attribute_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the atom attribute used to describe charge dummies.

	Returns

	The node key of the anchor in the molecule graph.

	Return type

	collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised if there are no anchor, or more than one anchor, found. Raised
also if the charge dummy is not a charge dummy.

	
vermouth.processors.locate_charge_dummies.locate_all_dummies(molecule, attribute_tag='charge_dummy')

	Set the position of all charge dummies of a molecule.

The molecule is modified in-place.

The charge dummies are placed at a distance to the anchor defined in nm by
their charge dummy attribute, the name of which is given in the
‘attribute_tag’ argument.

	Parameters

	
	molecule (vermouth.molecule.Molecule) – The molecule to work on.

	attribute_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the atom attribute that describe charge dummies.

	
vermouth.processors.locate_charge_dummies.locate_dummy(molecule, anchor_key, dummy_keys, attribute_tag='charge_dummy')

	Set the position of a group of charge dummies around a non-dummy anchor.

The molecule is modified in-place.

The charge dummies are placed at a distance to the anchor defined in nm by
their charge dummy attribute, the name of which is given in the
‘attribute_tag’ argument.

	Parameters

	
	molecule (vermouth.molecule.Molecule) – The molecule to work on.

	anchor_key – The key of the non-dummy anchor all the charge dummies are connected to.

	dummy_keys (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – A collection of atom keys for charge dummies to position.

	attribute_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the atom attribute that describe charge dummies.

 VerMoUTH 0.9

vermouth.processors.make_bonds module

Provides a processor that can add edges to a graph based on geometric criteria.

	
class vermouth.processors.make_bonds.MakeBonds(allow_name=True, allow_dist=True, fudge=1.2)

	Bases: vermouth.processors.processor.Processor

Processor to add edges to a system and separate it into separate connected
molecules.

Two separate criteria are used to decide where to add edges. The system’s
molecules are separated into residues. Then intra-residue edges are added.

If allow_names is True, the corresponding
Block is looked up in the system’s force field.
First edges will be added based on the edges in that block. In addition,
non-edges in the reference block are also stored.

Secondly, if allow_dist is True, edges will be added between any
atoms that are close enough together. The threshold for “close enough” is
determined based on the elements of the atoms in question and their van der
Waals radii, multiplied by fudge. This way edges will not be added
between atoms that were marked as ‘non-edge’ in the previous step, nor
between residues if one of the atoms is a hydrogen.

	
allow_names

	Whether edges should be added based on atom names.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
allow_dist

	Whether edges should be added based on distance.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
fudge

	A fudge factor used to increase the reference van der Waals radii to
allow for conformations that are slightly out of equilibrium.

	Type

	Number [https://docs.python.org/3/library/numbers.html#numbers.Number]

See also

make_bonds()

	
run_system(system)

	

	
vermouth.processors.make_bonds.make_bonds(system, allow_name=True, allow_dist=True, fudge=1.2)

	Creates bonds within molecules in the system.

First, edges will be created based on residue and atom names. Second, edges
will be created based on a distance criterion. Nodes in system must have
position and element attributes. The possible distance between nodes is
determined by values in VDW_RADII. Edges within residues will only be
guessed between atoms that are not known in the reference Block.
The system will be split into connected components, keeping residues
(identified by chain, residue name and residue id) within the same molecule.
This does mean that the final molecules can be disconnected.

Notes

	Edges for residues for which no block can be found will be added based on

	the distance criterion. A warning will be issued if this is the case.

Elements that are not in VDW_RADII do not make bonds based on distances.

	Parameters

	
	system (System) – The system in which to add edges.

	fudge (Number [https://docs.python.org/3/library/numbers.html#numbers.Number]) – Scale the allowed distance by this factor.

	Returns

	Molecules in system, in which edges have been added based on atom names
and possibly distance. The molecules have been split into connected
components keeping residues intact. Molecules can be disconnected within
residues.

	Return type

	List[Molecule]

 VerMoUTH 0.9

vermouth.processors.merge_all_molecules module

Provides a processor that merges all the molecules from a system.

	
class vermouth.processors.merge_all_molecules.MergeAllMolecules

	Bases: vermouth.processors.processor.Processor

Merge all the molecules from a system.

The molecules are merged into the first molecule of the system. Nothing is
done if there are no molecules.

	
static run_molecule(molecule)

	

	
run_system(system)

	

 VerMoUTH 0.9

vermouth.processors.merge_chains module

Merge molecules by chain.

	
class vermouth.processors.merge_chains.MergeChains(chains)

	Bases: vermouth.processors.processor.Processor

	
name = 'MergeChains'

	

	
run_system(system)

	

	
vermouth.processors.merge_chains.merge_chains(system, chains)

	Merge molecules with the given chains as a single molecule.

Molecules are merged into the resulting molecule if their chain is in the
list of chains to merge. The resulting molecule is not connected.

If a molecule comprises multiple chains, then it is merged only if all the
chains it comprises are part of the selection.

The meta variable are not conserved in the process.

The input system is modified in-place.

	Parameters

	
	system (vermouth.system.System) – The system to modify.

	chains (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A container of chain identifier.

 VerMoUTH 0.9

vermouth.processors.name_moltype module

Provides a processor to assign molecule type names to molecules.

A molecule type (moltype) is Gromacs’s concept of a molecule. Providing a name
for a molecule type is required to write an ITP file for that molecule. We also
use the molecule type name to group molecules sharing the same molecule type.
Molecule type identity is tested based on
vermouth.molecule.Molecule.share_moltype_with().

	
class vermouth.processors.name_moltype.NameMolType(deduplicate=True, meta_key='moltype')

	Bases: vermouth.processors.processor.Processor

Assigns molecule type (moltype) names to molecules.

Moltype names are the names given to molecules in an ITP file. This
processor assign consecutive names to the molecule. If the deduplicate
argument is set to True, then the processor assigns the same name to all
molecules with the same topology.

By default, the moltype name is written under the “moltype” key of the
molecule meta attributes. This key can be changed with the meta_key
argument.

	Parameters

	
	deduplicate (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the same name is given to all the molecules that share the
same topology. Else, each molecule is given a different name.

	meta_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the key in the molecule meta dictionary under which the
moltype must be stored.

See also

	vermouth.processors.set_molecule_meta.SetMoleculeMeta

	This processor can set key/value pairs in the meta attributes of one molecule, or all molecules in a system. It can be used to set the moltype manually.

	vermouth.gmx.itp.write_molecule_itp

	Writes the ITP file for a molecule, and use the ‘moltype’ meta to name the molecule.

	
run_system(system)

	

 VerMoUTH 0.9

vermouth.processors.pdb_reader module

Provides a processor that reads a PDB file.

See also

vermouth.pdb.pdb

	
class vermouth.processors.pdb_reader.PDBInput(filename, exclude=(), ignh=False, modelidx=0)

	Bases: vermouth.processors.processor.Processor

Reads PDB files.

	
filename

	The filename to parse.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exclude

	A collection of residue names that should not be parsed and excluded
from the final molecule(s)

	Type

	collections.abc.Container [https://docs.python.org/3/library/collections.abc.html#collections.abc.Container][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
ignh

	If True, hydrogens will be discarded from the input structure.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
modelidx

	The model number to parse/use.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

See also

read_pdb()
PDBParser()

	
run_system(system)

	

 VerMoUTH 0.9

vermouth.processors.processor module

Provides an abstract base class for processors.

	
class vermouth.processors.processor.Processor

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An abstract base class for processors. Subclasses must implement a
run_molecule method.

	
run_molecule(molecule)

	Process a single molecule. Must be implemented by subclasses.

	Parameters

	molecule (vermouth.molecule.Molecule) – The molecule to process.

	Returns

	Either the provided molecule, or a brand new one.

	Return type

	vermouth.molecule.Molecule

	
run_system(system)

	Process system.

	Parameters

	system (vermouth.system.System) – The system to process. Is modified in-place.

 VerMoUTH 0.9

vermouth.processors.quote module

Reads quotes, and produces a random one.

	
class vermouth.processors.quote.Quoter(quote_file=None)

	Bases: vermouth.processors.processor.Processor

Processor that can produce random string taken from a file. Useful for e.g.
quotes.

	Parameters

	quote_file (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The path of the file containing the strings. Must contain at least one
line.

	
run_system(system)

	Logs a random line from the file passed at initialization.

	Parameters

	system – Not used

	Returns

	

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
vermouth.processors.quote.read_quote_file(filehandle)

	Iterates over filehandle, and yields all strings that are not empty.

	Parameters

	filehandle (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A file opened for reading.

	Yields

	str – All stripped elements of filehandle that are not empty.

 VerMoUTH 0.9

vermouth.processors.rename_modified_residues module

Provides a processor that renames residues based on their current residue names
and identified modifications, such as PTMs.

	
class vermouth.processors.rename_modified_residues.RenameModifiedResidues

	Bases: vermouth.processors.processor.Processor

	
run_molecule(molecule)

	

	
vermouth.processors.rename_modified_residues.rename_modified_residues(mol)

	Renames residue names based on the current residue name, and the found
modifications. The new names are found in
force_field.renamed_residues, which should be a mapping of
{(rename, [modification_name, ...]): new_name}.

	Parameters

	mol (Molecule) – The molecule whose residue names should be changed. Is modified
in-place.

 VerMoUTH 0.9

vermouth.processors.repair_graph module

Provides a processor that repairs a graph based on a reference.

	
class vermouth.processors.repair_graph.RepairGraph(delete_unknown=False, include_graph=True)

	Bases: vermouth.processors.processor.Processor

Repairs a molecule such that it contains all atoms with appropriate atom
names, as per the blocks in the system’s force field, while taking any
mutations and modification into account. These should be added as ‘mutation’
and ‘modification’ attributes to the atoms of the relevant residues.

	
delete_unknown

	If True, removes any molecules that contain residues that are not known
to the system’s force field.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
include_graph

	If True, every node in the resulting graph will have a ‘graph’ attribute
containing a subgraph constructed using the input atoms.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

repair_graph()

	
run_molecule(molecule)

	

	
run_system(system)

	

	
vermouth.processors.repair_graph.get_default(dictionary, attr, default)

	Functions like dict.get() [https://docs.python.org/3/library/stdtypes.html#dict.get], except that when attr is in dictionary
and dictionary[attr] is None, it will return default.

	Parameters

	
	dictionary (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	attr (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) –

	default –

	Returns

	The value of dictionary[attr] if attr is in dictionary and
dictionary[attr] is not None. default otherwise.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
vermouth.processors.repair_graph.make_reference(mol)

	Takes an molecule graph (e.g. as read from a PDB file), and finds and
returns the graph how it should look like, including all matching nodes
between the input graph and the references.
Requires residue names to be correct.

Notes

The match between hydrogren atoms need not be perfect. See the
documentation of isomorphism.

	Parameters

	mol (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The graph read from e.g. a PDB file. Required node attributes:

	resname

	The residue name.

	resid

	The residue id.

	chain

	The chain identifier.

	element

	The element.

	atomname

	The atomname.

	Returns

	The constructed reference graph with the following node attributes:

	resid

	The residue id.

	resname

	The residue name.

	chain

	The chain identifier.

	found

	The residue subgraph from the PDB file.

	reference

	The residue subgraph used as reference.

	match

	A dictionary describing how the reference corresponds
with the provided graph. Keys are node indices of the
reference, values are node indices of the provided graph.

	Return type

	networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]

	
vermouth.processors.repair_graph.repair_graph(molecule, reference_graph, include_graph=True)

	Repairs a molecule graph produced based on the information in
reference_graph. Missing atoms will be added and atom- and residue-
names will be canonicalized. Atoms not present in reference_graph will
have the attribute PTM_atom set to True.

molecule is modified in place. Missing atoms (as per reference_graph)
are added, atom and residue names are canonicalized, and PTM atoms are
marked.

If include_graph is True, then the subgraph corresponding to each
node is included in the node under the “graph” attribute.

	Parameters

	
	molecule (molecule.Molecule) – The graph read from e.g. a PDB file. Required node attributes:

	resname

	The residue name.

	resid

	The residue id.

	element

	The element.

	atomname

	The atomname.

	reference_graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The reference graph as produced by make_reference(). Required node
attributes:

	resid

	The residue id.

	resname

	The residue name.

	found

	The residue subgraph from the PDB file.

	reference

	The residue subgraph used as reference.

	match

	A dictionary describing how the reference corresponds
with the provided graph. Keys are node indices of the
reference, values are node indices of the provided graph.

	include_graph (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the subgraph in the nodes.

	
vermouth.processors.repair_graph.repair_residue(molecule, ref_residue, include_graph)

	Rebuild missing atoms and canonicalize atomnames

 VerMoUTH 0.9

vermouth.processors.set_molecule_meta module

	
class vermouth.processors.set_molecule_meta.SetMoleculeMeta(**meta)

	Bases: vermouth.processors.processor.Processor

	
run_molecule(molecule)

	

 VerMoUTH 0.9

vermouth.processors.sort_molecule_atoms module

Provides a processor that sorts atoms within molecules.

	
class vermouth.processors.sort_molecule_atoms.SortMoleculeAtoms

	Bases: vermouth.processors.processor.Processor

Sort the atoms within a molecule by chain, resid, and resname.

This is usefull, for instance, when atoms have been added (e.g. missing
atoms identified by vermouth.processors.repair_graph.RepairGraph).
The atom keys are left identical, only the order of the nodes is changed.

	
run_molecule(molecule)

	

 VerMoUTH 0.9

vermouth.processors.tune_cystein_bridges module

Provides processors that can add and remove cystein bridges.

	
class vermouth.processors.tune_cystein_bridges.AddCysteinBridgesThreshold(threshold, template=[{'resname': 'CYS', 'atomname': 'SG'}], attribute='position')

	Bases: vermouth.processors.add_molecule_edges.AddMoleculeEdgesAtDistance

Add edges corresponding to cystein bridges on a distance criterion.

The edge for a cystein bridge is an edge between two atoms that match at
least one template from a list of templates if the two ends of the edge are
closer than a given distance.

	Parameters

	
	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Distance in nanometers under which to consider an edge.

	template (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of node templates.

	
class vermouth.processors.tune_cystein_bridges.RemoveCysteinBridgeEdges(template=[{'resname': 'CYS', 'atomname': 'SG'}])

	Bases: vermouth.processors.processor.Processor

Processor removing edges corresponding to cystein bridges.

The edge for a cystein bridge is an edge between two atoms that match at
least one template from a list of templates.

	Parameters

	template (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of node templates.

	
run_molecule(molecule)

	

	
vermouth.processors.tune_cystein_bridges.remove_cystein_bridge_edges(molecule, templates=[{'resname': 'CYS', 'atomname': 'SG'}])

	Remove all the edges that correspond to cystein bridges from a molecule.

Cystein bridge edges link an atom from a cystein side chain to the same
atom on an other cystein. Selecting the correct atom is done with a list
of template node dictionaries. A template node dictionary functions in the
same way as node matching in links. An atom that can be involved in a
cystein bridge must match at least one of the templates of the list.
The default template list selects the ‘SG’ bead of the residue ‘CYS’:
[{'resname': 'CYS', 'atomname': 'SG'},].

A template is a dictionary that defines the key:value pairs that must be
matched in the atoms. Values can be instances of
LinkPredicate.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – Molecule to modify in-place.

	templates (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of templates; selected atom must match at least one.

 VerMoUTH 0.9

vermouth.citation_parser module

	
class vermouth.citation_parser.BibTexDirector(force_field)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Lightweight parser for BibTex files. BibTex files
in general have an assorment of entries that
describe the corresponding sort of publication
to refer to and then a number required and optional
fields for the different types of entries. A field
for example would be Title giving the title of a
publication. The syntax in general looks as follows:

	@<entry>{<some custom ID>, field = {<content>},

	field = {<content>}}

Alternatively the {} can be replaced by quotation
marks.

This parser only parses the version with {} as
used by google scholar. In addition we do not
check for missing fields or invalid fields. All
fields are accepted and no fields are required.

	
static extract_fields(entry_string)

	Given an entry string without entry type and identified
(i.e. ,<field_type> = {<content>}, etc.) split all the
contents and field-types using a regular expression.

	Parameters

	entry_string (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Yields

	str, str – the field type, the field content

	
static find_entries(citation_string)

	Look in a string where @ indicates the
beginning of a new entry and return the indices.

	Parameters

	citation_string (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Yields

	int – position of ‘@’ in citation_string

	
parse(lines)

	Given lines from a bibtex file parse them and update
the force-field citation instance variable.

	
parse_entry(entry_string)

	Given a string describing a single entry, parse it and
then update the force_field citations dict with a field
dict.

	
pop_entry_type(entry_string)

	Given a string describing a single
entry strip that entry from the string
and return it. Note the string MUST
contain the @.

	Parameters

	entry_string (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	
	str – The entry type

	str – The shortened string

	
static pop_key(entry_string)

	Given a string of a single entry from which the
entry_type has already been removed (see pop_entry_type)
get the custom ID, strip it and return the entry_string
without that ID.

	Parameters

	entry_string (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	the key and the string without key

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]

	
static prepare_file(lines)

	Bibtex is not sensitive to line spacing so we join
the line as one string. Comment characters are not
allowed.

	
vermouth.citation_parser.citation_formatter(citation, title=False)

	Very basic and minimal formatter for citations. It
is adopted from basic ACS style formatting. Fields within
[] are optional.

<authors> [journal] <year>; [doi]

Note that the formatter cannot fromat latex
like syntax (e.g. a{”} for ae)

	
vermouth.citation_parser.read_bib(lines, force_field)

	

 VerMoUTH 0.9

vermouth.edge_tuning module

Set of tools to add and remove edges.

	
vermouth.edge_tuning.add_edges_at_distance(molecule, threshold, selection_a, selection_b, attribute='position')

	Add edges within a molecule when the distance is below a threshold.

Create edges within a molecule between nodes that have an end part of
‘selection_a’, the other end part of ‘selection_b’, and a distance between
the ends that is lesser than the given threshold.

All nodes that are part of ‘selection_a’ or ‘selection_b’ must have a
position stored under the attribute which key is given with the ‘attribute’
argument. That key is ‘position’ by default. If at least one node has the
position missing, then a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] is raised.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – Molecule to modify in-place.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – The distance threshold under which edges will be created. The distance
is expressed in nm.

	selection_a (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – List of node keys from the molecule.

	selection_b (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – List of node keys from the molecule.

	attribute (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – Name of the key in the node dictionaries under which the coordinates
are stored.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – At least one node from the selections does not have a position.

	
vermouth.edge_tuning.add_edges_threshold(molecules, threshold, templates_a, templates_b, attribute='position', min_edges=0)

	Add edges between two selections when under a given threshold.

Edges are added within and between the molecules and connect nodes that
match the given template. Molecules that get connected by an edge are
merged and the new list of molecules is returned.

	Parameters

	
	molecules (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][Molecule]) – A list of molecules.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – The distance threshold in nanometers under which an edge is created.

	templates_a (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A list of templates; a node need to match at least one of them to be
selected at one end.

	templates_b (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A list of templates; a node need to match at least one of them to be
selected at the other end.

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the key in the node dictionaries under which the coordinates
are stored.

	min_edges (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of edges between to nodes for an edge to be added.

	Returns

	A new list of molecules.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][vermouth.molecule.Molecule]

	
vermouth.edge_tuning.add_inter_molecule_edges(molecules, edges)

	Create edges between molecules.

The function is given a list of molecules and a list of edges. Each edge is
provided as a tuple of two nodes, each node being a tuple of the molecule
index in the list of molecule, and the node key in that molecule. An edge
therefore looks like ((0, 10), (2, 20)) where 1 and 2 are
indices of molecules in molecules, 10 is the key of a node from
molecules[0], and 20 is the key of a node from molecules[2].

The function can create edges within a molecule if the same molecule
index is given for both ends of edges.

Molecules that get linked are merged. In a merged molecule, the order of
the input molecules is kept. In a list of molecules numbered from 0 to 4,
if molecules 1, 2, and 4 are merged, then the result molecules are, in
order, 0, 1-2-4, 3.

	Parameters

	
	molecules (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][vermouth.molecule.Molecule]) – List of molecules to link.

	edges (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]]) – List of edges in a (molecule_index, node_key) format as described
above. Edges can have a third element, it is then a dictionary of
attributes to be attached to the edge.

	Returns

	New list of molecules.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
vermouth.edge_tuning.pairs_under_threshold(molecules, threshold, selection_a, selection_b, attribute='position', min_edges=0)

	List pairs of nodes from a selection that are closer than a threshold.

Get the distance between nodes from multiple molecules and list the pairs
that are closer than the given threshold. The molecules are given as a list
of molecules, the selection is a list of nodes each of them a tuple
(index of the molecule in the list, key of the node in the molecule).
The result of the function is a generator of node pairs followed by the
distance between the nodes, each node formated as in the selection.

All nodes from the selection must have a position accessible under the key
given as the ‘attribute’ argument. That key is ‘position’ by default.

With the min_edges argument, one can prevent pairs to be selected if
there is a path between two nodes that is shorter than a given number of
edges.

	Parameters

	
	molecules (collections.abc.Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection][vermouth.molecule.Molecule]) – A list of vermouth.molecule.Molecule.

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – A distance threshold in nm. Pairs are return if the nodes are closer
than this threshold.

	selection_a (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – List of nodes to consider at one end of the pairs. The format is
described above.

	selection_b (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – List of nodes to consider at the other end of the pairs. The format is
described above.

	attribute (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The dictionary key under which the node positions are stored in the
nodes.

	min_edges (int [https://docs.python.org/3/library/functions.html#int]) – Do not select pairs that are connected by less than that number of
edges.

	Yields

	tuple[collections.abc.Hashable, collections.abc.Hashable, float] – Pairs of node closer than the threshold in the format described above
and the distance between the nodes.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – Raised if a node from the selection does not have a position.

Notes

Symetric node pairs are not deduplicated.

	
vermouth.edge_tuning.prune_edges_between_selections(molecule, selection_a, selection_b)

	Remove edges which have their ends part of given selections.

An edge is removed if has one end that is part of ‘selection_a’, and the
other end part of ‘selection_b’.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – Molecule to prune in-place.

	selection_a (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – List of node keys from the molecule.

	selection_b (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – List of node keys from the molecule.

See also

prune_edges_with_selectors()

	
vermouth.edge_tuning.prune_edges_with_selectors(molecule, selector_a, selector_b=None)

	Remove edges with the ends between selections defined by selectors.

An edge is removed if one of its end is part of the selection defined by
‘selector_a’, and its other end is part of the selection defined by
‘selector_b’. A selector is a function that accept a node dictionary as
argument and returns True if the node is part of the selection.

The ‘selection_b’ argment is optional. If it is None, then ‘selector_a’
is used for the selection at both ends.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – Molecule to prune in-place.

	selector_a (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) – A selector for one end of the edges.

	selector_b (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) – A selector for the second end of the edges. If set to None, then
‘selector_a’ is used for both ends.

See also

prune_edges_between_selections()

	
vermouth.edge_tuning.select_nodes_multi(molecules, selector)

	Find the nodes that correspond to a selector among multiple molecules.

Runs a selector over multiple molecules. The selector must be a function
that takes a node dictionary as argument and returns True if the node
should be selected. The selection is yielded as tuples of a molecule indice
from the molecule list input, and a key from the molecule.

	Parameters

	
	molecule (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][Molecule]) – A list of molecules.

	selector (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) – A selector function.

	Yields

	tuple[int, collections.abc.Hashable] – Molecule/key identifier for the selected nodes.

 VerMoUTH 0.9

vermouth.ffinput module

Read .ff files.

The FF file format describes molecule components for a given force field. It is
a test format devised for quick prototyping.

The format is built on top of a subset of the ITP format. Describing a block
is done in the same way an ITP file describes a molecule.

	
class vermouth.ffinput.FFDirector(force_field)

	Bases: vermouth.parser_utils.SectionLineParser

	
COMMENT_CHAR = ';'

	

	
METH_DICT = {('citations',): (<function FFDirector._pase_ff_citations>, {}), ('link',): (<function FFDirector._link>, {'context_type': 'link'}), ('link', '!SETTLE'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!angle_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!angle_restraints_z'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!angles'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!bonds'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!constraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!dihedral_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!dihedrals'): (<function FFDirector._dih_interactions>, {'context_type': 'link'}), ('link', '!distance_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!exclusions'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!impropers'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!orientation_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!pairs'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!pairs_nb'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!position_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!virtual_sites2'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!virtual_sites3'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!virtual_sites4'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', '!virtual_sitesn'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'SETTLE'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'angle_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'angle_restraints_z'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'angles'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'atoms'): (<function FFDirector._link_atoms>, {}), ('link', 'bonds'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'citation'): (<function FFDirector._parse_citation>, {'context_type': 'link'}), ('link', 'constraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'debug'): (<function FFDirector._parse_log_entry>, {'context_type': 'link'}), ('link', 'dihedral_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'dihedrals'): (<function FFDirector._dih_interactions>, {'context_type': 'link'}), ('link', 'distance_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'edges'): (<function FFDirector._edges>, {'negate': False, 'context_type': 'link'}), ('link', 'error'): (<function FFDirector._parse_log_entry>, {'context_type': 'link'}), ('link', 'exclusions'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'features'): (<function FFDirector._link_features>, {'context_type': 'link'}), ('link', 'impropers'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'info'): (<function FFDirector._parse_log_entry>, {'context_type': 'link'}), ('link', 'molmeta'): (<function FFDirector._link>, {'context_type': 'molmeta'}), ('link', 'non-edges'): (<function FFDirector._edges>, {'negate': True, 'context_type': 'link'}), ('link', 'orientation_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'pairs'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'pairs_nb'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('link', 'patterns'): (<function FFDirector._link_patterns>, {'context_type': 'link'}), ('link', 'position_restraints'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'virtual_sites2'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'virtual_sites3'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'virtual_sites4'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'virtual_sitesn'): (<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'warning'): (<function FFDirector._parse_log_entry>, {'context_type': 'link'}), ('macros',): (<function SectionLineParser._macros>, {}), ('modification',): (<function FFDirector._modification>, {}), ('modification', 'SETTLE'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'angle_restraints'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'angle_restraints_z'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'angles'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'atoms'): (<function FFDirector._modification_atoms>, {}), ('modification', 'bonds'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'citation'): (<function FFDirector._parse_citation>, {'context_type': 'modification'}), ('modification', 'constraints'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'debug'): (<function FFDirector._parse_log_entry>, {'context_type': 'modification'}), ('modification', 'dihedral_restraints'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'dihedrals'): (<function FFDirector._dih_interactions>, {'context_type': 'modification'}), ('modification', 'distance_restraints'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'edges'): (<function FFDirector._edges>, {'negate': False, 'context_type': 'modification'}), ('modification', 'error'): (<function FFDirector._parse_log_entry>, {'context_type': 'modification'}), ('modification', 'exclusions'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'features'): (<function FFDirector._link_features>, {'context_type': 'modification'}), ('modification', 'impropers'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'info'): (<function FFDirector._parse_log_entry>, {'context_type': 'modification'}), ('modification', 'non-edge'): (<function FFDirector._invalid_out_of_link>, {}), ('modification', 'orientation_restraints'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'pairs'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'pairs_nb'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'patterns'): (<function FFDirector._link_patterns>, {'context_type': 'modification'}), ('modification', 'position_restraints'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'virtual_sites2'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'virtual_sites3'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'virtual_sites4'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'virtual_sitesn'): (<function FFDirector._interactions>, {'context_type': 'modification'}), ('modification', 'warning'): (<function FFDirector._parse_log_entry>, {'context_type': 'modification'}), ('moleculetype',): (<function FFDirector._block>, {}), ('moleculetype', 'SETTLE'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'angle_restraints'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'angle_restraints_z'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'angles'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'atoms'): (<function FFDirector._block_atoms>, {}), ('moleculetype', 'bonds'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'citation'): (<function FFDirector._parse_citation>, {'context_type': 'block'}), ('moleculetype', 'constraints'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'debug'): (<function FFDirector._parse_log_entry>, {'context_type': 'block'}), ('moleculetype', 'dihedral_restraints'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'dihedrals'): (<function FFDirector._dih_interactions>, {'context_type': 'block'}), ('moleculetype', 'distance_restraints'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'edges'): (<function FFDirector._edges>, {'negate': False, 'context_type': 'block'}), ('moleculetype', 'error'): (<function FFDirector._parse_log_entry>, {'context_type': 'block'}), ('moleculetype', 'exclusions'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'features'): (<function FFDirector._invalid_out_of_link>, {}), ('moleculetype', 'impropers'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'info'): (<function FFDirector._parse_log_entry>, {'context_type': 'block'}), ('moleculetype', 'non-edge'): (<function FFDirector._invalid_out_of_link>, {}), ('moleculetype', 'non-edges'): (<function FFDirector._edges>, {'negate': True, 'context_type': 'block'}), ('moleculetype', 'orientation_restraints'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'pairs'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'pairs_nb'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'patterns'): (<function FFDirector._invalid_out_of_link>, {}), ('moleculetype', 'position_restraints'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'virtual_sites2'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'virtual_sites3'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'virtual_sites4'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'virtual_sitesn'): (<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'warning'): (<function FFDirector._parse_log_entry>, {'context_type': 'block'}), ('variables',): (<function FFDirector._variables>, {})}

	

	
finalize_section(previous_section, ended_section)

	Called once a section is finished. It appends the current_links list
to the links and update the block dictionary with current_block. Thereby it
finishes the reading a given section.

	Parameters

	
	previous_section (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The last parsed section.

	ended_section (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The sections that have been ended.

	
get_context(context_type='')

	

	
has_context()

	

	
interactions_natoms = {'SETTLE': 1, 'angle_restraints': 4, 'angle_restraints_z': 2, 'angles': 3, 'bonds': 2, 'constraints': 2, 'dihedral_restraints': 4, 'dihedrals': 4, 'distance_restraints': 2, 'impropers': 4, 'orientation_restraints': 2, 'pairs': 2, 'pairs_nb': 2, 'position_restraints': 1, 'virtual_sites2': 3, 'virtual_sites3': 4, 'virtual_sites4': 5}

	

	
parse_header(line, lineno=0)

	Parses a section header with line number lineno. Sets
vermouth.parser_utils.SectionLineParser.section when applicable.
Does not check whether line is a valid section header.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	lineno (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	The result of calling finalize_section(), which is called
if a section ends.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the section header is unknown.

	
vermouth.ffinput.read_ff(lines, force_field)

	

 VerMoUTH 0.9

vermouth.file_writer module

Provides the DeferredFileWriter, which allow writing of files without affecting
existing files, until it is clear the written changes are correct.

	
class vermouth.file_writer.DeferredFileWriter

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A singleton class/object that is intended to prevent writing output to files
that is invalid, due to e.g. warnings further down the pipeline.

If this class is used to open a file for writing, a temporary file is created
and returned instead. Once it’s clear the output produced is valid the
write() method can be used to
finalize the written changes by moving them to their intended destination.
If a file with that name already exists it is backed up according to the
Gromacs scheme.

	
close()

	Remove all produced temporary files.

	
open(filename, mode='r', *args, **kwargs)

	If mode is either ‘w’ or ‘a’, opens and returns a handle to a temporary
file. If mode is ‘r’ opens and returns a handle to the file specified.

Once write() is called
the changes written to all files opened this way are propagated to their
final destination.

	Parameters

	
	filename (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]) – The final name of the file to be opened.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The mode in which the file is to be opened.

	*args (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – Passed to os.fdopen() [https://docs.python.org/3/library/os.html#os.fdopen].

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passed to os.fdopen() [https://docs.python.org/3/library/os.html#os.fdopen].

	Returns

	An opened file

	Return type

	io.IOBase [https://docs.python.org/3/library/io.html#io.IOBase]

	
write()

	Finalize writing all open files by moving the created temporary files to
their final destinations.

Existing file destinations will be backed up according to the Gromacs
scheme.

	
class vermouth.file_writer.Singleton

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Metaclass for creating singleton objects. Taken from 1.

	1

	https://stackoverflow.com/questions/50566934/why-is-this-singleton-implementation-not-thread-safe/50567397

 VerMoUTH 0.9

vermouth.forcefield module

Provides a class used to describe a forcefield and all associated data.

	
class vermouth.forcefield.ForceField(directory=None, name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Description of a force field.

A force field can be created empty or read from a directory. In any case, a
force field must be named. If read from a directory, the base name of the
directory is used as force field name, unless the name attribute is
provided. If the force field is created empty, then name must be
provided.

	Parameters

	
	directory (str [https://docs.python.org/3/library/stdtypes.html#str] or pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], optional) – A directory to read the force field from.

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the force field.

	
blocks

	
	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
links

	
	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
modifications

	
	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
renamed_residues

	
	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
name

	
	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
variables

	
	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
features

	List the features declared by the links.

	Returns

	

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
has_feature(feature)

	Test if a feature is declared by the links.

	Parameters

	feature (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the feature of interest.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
read_from(directory)

	Populate or update the force field from a directory.

The provided directory must contain a subdirectory with the same name
as the force field.

	
reference_graphs

	Returns all known blocks.

	Returns

	

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
vermouth.forcefield.find_force_fields(directory, force_fields=None)

	Read all the force fields in the given directory.

A force field is defined as a directory that contains at least one RTP
file. The name of the force field is the base name of the directory.

If the force field argument is not None, then it must be a dictionary
with force field names as keys and instances of ForceField as
values. The force fields in the dictionary will be updated if force fields
with the same names are found in the directory.

	Parameters

	
	directory (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the directory containing the force fields.

	force_fields (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of force fields to update.

	Returns

	A dictionary of force fields read or updated. Keys are force field
names as strings, and values are instances of ForceField. If a
dictionary was provided as the “force_fields” argument, then the
returned dictionary is the same instance as the one provided but with
updated content.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
vermouth.forcefield.get_native_force_field(name)

	Get a force field from the distributed library knowing its name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the requested force field.

	Returns

	

	Return type

	ForceField

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – There is no force field with the requested name in the distributed
library.

	
vermouth.forcefield.iter_force_field_files(directory, extensions=dict_keys(['.rtp', '.ff', '.bib']))

	Returns a generator over the path of all the force field files in the directory.

 VerMoUTH 0.9

vermouth.geometry module

Geometric operations.

	
vermouth.geometry.angle(vector_ba, vector_bc)

	Calculate the angle in radians between two vectors.

The function assumes the following situation:

 B
 / \
A C

It returns the angle between BA and BC.

	
vermouth.geometry.dihedral(coordinates)

	Calculate the dihedral angle in radians.

	Parameters

	coordinates (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The coordinates of 4 points defining the dihedral angle. Each row
corresponds to a point, and each column to a dimension.

	Returns

	The calculated angle between -pi and +pi.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
vermouth.geometry.dihedral_phase(coordinates)

	Calculate a dihedral angle in radians with a -pi phase correction.

	Parameters

	coordinates (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The coordinates of 4 points defining the dihedral angle. Each row
corresponds to a point, and each column to a dimension.

	Returns

	The calculated angle between -pi and +pi.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

	dihedral()

	Calculate a dihedral angle.

	
vermouth.geometry.distance_matrix(coordinates_a, coordinates_b)

	Compute a distance matrix between two set of points.

Notes

This function does not account for periodic boundary conditions.

	Parameters

	
	coordinates_a (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Coordinates of the points in the selections. Each row must correspond
to a point and each column to a dimension.

	coordinates_b (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Coordinates of the points in the selections. Each row must correspond
to a point and each column to a dimension.

	Returns

	Rows correspond to the points from coordinates_a, columns correspond
from coordinates_b.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

 VerMoUTH 0.9

vermouth.graph_utils module

	
class vermouth.graph_utils.MappingGraphMatcher(*args, edge_match=None, node_match=None, **kwargs)

	Bases: networkx.algorithms.isomorphism.isomorphvf2.GraphMatcher

	
semantic_feasibility(G1_node, G2_node)

	Returns True if mapping G1_node to G2_node is semantically feasible.
Adapted from networkx.algorithms.isomorphism.vf2userfunc._semantic_feasibility.

	
vermouth.graph_utils.add_element_attr(molecule)

	Adds an element attribute to every node in molecule, based on that node’s
atomname attribute.

	Parameters

	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The graph of which nodes should get an element attribute.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If no element could be guessed for a node.

	
vermouth.graph_utils.categorical_cartesian_product(graph1, graph2, attributes=())

	

	
vermouth.graph_utils.categorical_maximum_common_subgraph(graph1, graph2, attributes=())

	

	
vermouth.graph_utils.categorical_modular_product(graph1, graph2, attributes=())

	

	
vermouth.graph_utils.collect_residues(graph, attrs=('chain', 'resid', 'resname', 'insertion_code'))

	Creates groups of indices based on the node attributes with keys attrs.
All nodes in graph will be part of exactly one group.

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The graph whose node indices should be grouped.

	attrs (Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]) – The attribute keys that should be used to group node indices. The
associated values should be hashable.

	Returns

	The keys are the found node attributes, the values the associated node
indices.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], set [https://docs.python.org/3/library/stdtypes.html#set]]

	
vermouth.graph_utils.get_attrs(node, attrs)

	Returns multiple values from a dictionary in order.

	Parameters

	
	node (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dict from which items should be taken.

	attrs (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – The keys which values should be taken.

	Returns

	A tuple containing the value of every key in attrs in the same order,
where missing values are None.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
vermouth.graph_utils.make_residue_graph(graph, attrs=('chain', 'resid', 'resname', 'insertion_code'))

	Create a new graph based on graph, where nodes with identical attribute
values for the attribute names in attrs will be contracted into a single,
coarser node. With the default arguments it will create a graph with one
node per residue.
Resulting (coarse) nodes will have the same attributes as the constructing
nodes, but only those that have identical values. In addition, they’ll have
attributes ‘graph’, ‘nnodes’, ‘nedges’ and ‘density’.

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The graph to condense.

	attrs (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – The node attributes that determine node equivalence.

	Returns

	The resulting coarser graph, where equivalent nodes are contracted to a
single node.

	Return type

	networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]

	
vermouth.graph_utils.partition_graph(graph, partitions)

	Create a new graph based on graph, where nodes are aggregated based on
partitions, similar to quotient_graph() [https://networkx.org/documentation/latest/reference/algorithms/generated/networkx.algorithms.minors.quotient_graph.html#networkx.algorithms.minors.quotient_graph],
except that it only accepts pre-made partitions, and edges are not given
a ‘weight’ attribute. Much fast than the quotient_graph, since it creates
edges based on existing edges rather than trying all possible combinations.

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The graph to partition

	partitions (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]]) – E.g. a list of lists of node indices, describing the partitions. Will
be sorted by lowest index.

	Returns

	The coarser graph.

	Return type

	networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]

	
vermouth.graph_utils.rate_match(residue, bead, match)

	A helper function which rates how well match describes the isomorphism
between residue and bead based on the number of matching atomnames.

	Parameters

	
	residue (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – A graph. Required node attributes:

	atomname

	The name of an atom.

	bead (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – A subgraph of residue where the isomorphism is described by match.
Required node attributes:

	atomname

	The name of an atom.

	Returns

	The number of entries in match where the atomname in residue matches
the atomname in bead.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

 VerMoUTH 0.9

vermouth.ismags module

ISMAGS Algorithm

Provides a Python implementation of the ISMAGS algorithm. 1

It is capable of finding (subgraph) isomorphisms between two graphs, taking the
symmetry of the subgraph into account. In most cases the VF2 algorithm is
faster (at least on small graphs) than this implementation, but in some cases
there is an exponential number of isomorphisms that are symmetrically
equivalent. In that case, the ISMAGS algorithm will provide only one solution
per symmetry group.

In addition, this implementation also provides an interface to find the
largest common induced subgraph 2 between any two graphs, again taking
symmetry into account. Given graph and subgraph the algorithm will remove
nodes from the subgraph until subgraph is isomorphic to a subgraph of
graph. Since only the symmetry of subgraph is taken into account it is
worth thinking about how you provide your graphs:

>>> graph1 = nx.path_graph(4)
>>> graph2 = nx.star_graph(3)
>>> ismags = isomorphism.ISMAGS(graph1, graph2)
>>> ismags.is_isomorphic()
False
>>> list(ismags.largest_common_subgraph())
[{1: 0, 0: 1, 2: 2}, {2: 0, 1: 1, 3: 2}]
>>> ismags2 = isomorphism.ISMAGS(graph2, graph1)
>>> list(ismags2.largest_common_subgraph())
[{1: 0, 0: 1, 2: 2},
 {1: 0, 0: 1, 3: 2},
 {2: 0, 0: 1, 1: 2},
 {2: 0, 0: 1, 3: 2},
 {3: 0, 0: 1, 1: 2},
 {3: 0, 0: 1, 2: 2}]

However, when not taking symmetry into account, it doesn’t matter:

>>> list(ismags.largest_common_subgraph(symmetry=False))
[{1: 0, 0: 1, 2: 3},
 {1: 0, 2: 1, 0: 3},
 {2: 0, 1: 1, 3: 3},
 {2: 0, 3: 1, 1: 3},
 {1: 0, 0: 2, 2: 3},
 {1: 0, 2: 2, 0: 3},
 {2: 0, 1: 2, 3: 3},
 {2: 0, 3: 2, 1: 3},
 {1: 0, 0: 1, 2: 2},
 {1: 0, 2: 1, 0: 2},
 {2: 0, 1: 1, 3: 2},
 {2: 0, 3: 1, 1: 2}]
>>> list(ismags2.largest_common_subgraph(symmetry=False))
[{1: 0, 0: 1, 2: 3},
 {1: 0, 2: 1, 0: 3},
 {2: 0, 1: 1, 3: 3},
 {2: 0, 3: 1, 1: 3},
 {1: 0, 0: 2, 2: 3},
 {1: 0, 2: 2, 0: 3},
 {2: 0, 1: 2, 3: 3},
 {2: 0, 3: 2, 1: 3},
 {1: 0, 0: 1, 2: 2},
 {1: 0, 2: 1, 0: 2},
 {2: 0, 1: 1, 3: 2},
 {2: 0, 3: 1, 1: 2}]

Notes

	The current implementation works for undirected graphs only. The algorithm
in general should work for directed graphs as well though.

	Node keys for both provided graphs need to be fully orderable as well as
hashable.

	Node and edge equality is assumed to be transitive: if A is equal to B, and
B is equal to C, then A is equal to C.

References

	1(1,2)

	M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle,
M. Pickavet, “The Index-Based Subgraph Matching Algorithm with General
Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph
Enumeration”, PLoS One 9(5): e97896, 2014.
https://doi.org/10.1371/journal.pone.0097896

	2

	https://en.wikipedia.org/wiki/Maximum_common_induced_subgraph

	
class vermouth.ismags.ISMAGS(graph, subgraph, node_match=None, edge_match=None, cache=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Implements the ISMAGS subgraph matching algorith. 1 ISMAGS stands for
“Index-based Subgraph Matching Algorithm with General Symmetries”. As the
name implies, it is symmetry aware and will only generate non-symmetric
isomorphisms.

Notes

The implementation imposes additional conditions compared to the VF2
algorithm on the graphs provided and the comparison functions
(node_equality and edge_equality):

	Node keys in both graphs must be orderable as well as hashable.

	Equality must be transitive: if A is equal to B, and B is equal to C,
then A must be equal to C.

	
graph

	
	Type

	networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]

	
subgraph

	
	Type

	networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]

	
node_equality

	The function called to see if two nodes should be considered equal.
It’s signature looks like this:
f(graph1: networkx.Graph, node1, graph2: networkx.Graph, node2) -> bool.
node1 is a node in graph1, and node2 a node in graph2.
Constructed from the argument node_match.

	Type

	collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]

	
edge_equality

	The function called to see if two edges should be considered equal.
It’s signature looks like this:
f(graph1: networkx.Graph, edge1, graph2: networkx.Graph, edge2) -> bool.
edge1 is an edge in graph1, and edge2 an edge in graph2.
Constructed from the argument edge_match.

	Type

	collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) –

	subgraph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) –

	node_match (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable] or None [https://docs.python.org/3/library/constants.html#None]) – Function used to determine whether two nodes are equivalent. Its
signature should look like f(n1: dict, n2: dict) -> bool, with
n1 and n2 node property dicts. See also
categorical_node_match() [https://networkx.org/documentation/latest/reference/algorithms/generated/networkx.algorithms.isomorphism.categorical_node_match.html#networkx.algorithms.isomorphism.categorical_node_match] and
friends.
If None, all nodes are considered equal.

	edge_match (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable] or None [https://docs.python.org/3/library/constants.html#None]) – Function used to determine whether two edges are equivalent. Its
signature should look like f(e1: dict, e2: dict) -> bool, with
e1 and e2 edge property dicts. See also
categorical_edge_match() [https://networkx.org/documentation/latest/reference/algorithms/generated/networkx.algorithms.isomorphism.categorical_edge_match.html#networkx.algorithms.isomorphism.categorical_edge_match] and
friends.
If None, all edges are considered equal.

	cache (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]) – A cache used for caching graph symmetries.

	
analyze_symmetry(graph, node_partitions, edge_colors)

	Find a minimal set of permutations and corresponding co-sets that
describe the symmetry of subgraph.

	Returns

	
	set[frozenset] – The found permutations. This is a set of frozenset of pairs of node
keys which can be exchanged without changing subgraph.

	dict[collections.abc.Hashable, set[collections.abc.Hashable]] – The found co-sets. The co-sets is a dictionary of {node key:
set of node keys}. Every key-value pair describes which values
can be interchanged without changing nodes less than key.

	
find_isomorphisms(symmetry=True)

	Find all subgraph isomorphisms between subgraph <=
graph.

	Parameters

	symmetry (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether symmetry should be taken into account. If False, found
isomorphisms may be symmetrically equivalent.

	Yields

	dict – The found isomorphism mappings of {graph_node: subgraph_node}.

	
is_isomorphic(symmetry=False)

	Returns True if graph is isomorphic to subgraph and
False otherwise.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
isomorphisms_iter(symmetry=True)

	Does the same as find_isomorphisms() if graph and
subgraph have the same number of nodes.

	
largest_common_subgraph(symmetry=True)

	Find the largest common induced subgraphs between subgraph and
graph.

	Parameters

	symmetry (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether symmetry should be taken into account. If False, found
largest common subgraphs may be symmetrically equivalent.

	Yields

	dict – The found isomorphism mappings of {graph_node: subgraph_node}.

	
subgraph_is_isomorphic(symmetry=False)

	Returns True if a subgraph of graph is isomorphic to
subgraph and False otherwise.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
subgraph_isomorphisms_iter(symmetry=True)

	Alternative name for find_isomorphisms().

	
vermouth.ismags.intersect(collection_of_sets)

	Given an collection of sets, returns the intersection of those sets.

	Parameters

	collection_of_sets (collections.abc.Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection][set [https://docs.python.org/3/library/stdtypes.html#set]]) – A collection of sets.

	Returns

	An intersection of all sets in collection_of_sets. Will have the same
type as the item initially taken from collection_of_sets.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
vermouth.ismags.make_partitions(items, test)

	Partitions items into sets based on the outcome of test(item1, item2).
Pairs of items for which test returns True end up in the same set.

	Parameters

	
	items (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – Items to partition

	test (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – A function that will be called with 2 arguments, taken from items.
Should return True if those 2 items need to end up in the same
partition, and False otherwise.

	Returns

	A list of sets, with each set containing part of the items in items,
such that all(test(*pair) for pair in itertools.combinations(set, 2))
== True

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][set [https://docs.python.org/3/library/stdtypes.html#set]]

Notes

The function test is assumed to be transitive: if test(a, b) and
test(b, c) return True, then test(a, c) must also be True.

	
vermouth.ismags.partition_to_color(partitions)

	Creates a dictionary with for every item in partition for every partition
in partitions the index of partition in partitions.

	Parameters

	partitions (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]]) – As returned by make_partitions().

	Returns

	

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], int [https://docs.python.org/3/library/functions.html#int]]

 VerMoUTH 0.9

vermouth.log_helpers module

Provide some helper classes to allow new style brace formatting for logging and
processing the type keyword.

	
class vermouth.log_helpers.BipolarFormatter(low_formatter, high_formatter, cutoff, logger=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A logging formatter that formats using either low_formatter or
high_formatter depending on the logger’s effective loglevel.

	Parameters

	
	low_formatter (logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]) – The formatter used if cutoff <= logger.getEffectiveLevel().

	high_formatter (logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter]) – The formatter used if cutoff > logger.getEffectiveLevel().

	cutoff (int [https://docs.python.org/3/library/functions.html#int]) – The cutoff used to decide whether the low or high formatter is used.

	logger (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – The logger whose effective loglevel is used. Defaults to
logging.getLogger().

	
class vermouth.log_helpers.CountingHandler(*args, type_attribute='type', default_type='general', **kwargs)

	Bases: logging.NullHandler [https://docs.python.org/3/library/logging.handlers.html#logging.NullHandler]

A logging handler that counts the number of times a specific type of
message is logged per loglevel.

	Parameters

	
	type_attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute carrying the type.

	default_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of message if none is provided.

	
handle(record)

	Handle a log record by counting it.

	
number_of_counts_by(level=None, type=None)

	Return the number of logging calls counted, filtered by level and type.

	Parameters

	
	level – Only count log events of this level.

	type – Only count log events of this type.

	Returns

	The number of events counted.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
class vermouth.log_helpers.Message(fmt, args, kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that defers string formatting until it’s __str__ method is
called.

	
class vermouth.log_helpers.PassingLoggerAdapter(logger, extra=None)

	Bases: logging.LoggerAdapter [https://docs.python.org/3/library/logging.html#logging.LoggerAdapter]

Helper class that is actually capable of chaining multiple LoggerAdapters.

	
addHandler(*args, **kwargs)

	

	
log(level, msg, *args, **kwargs)

	

	
manager

	
	
Logger.manager = <logging.Manager object>

	

	
process(msg, kwargs)

	

	
class vermouth.log_helpers.StyleAdapter(logger, extra=None)

	Bases: vermouth.log_helpers.PassingLoggerAdapter

Logging adapter that encapsulate messages in Message, allowing
{} style formatting.

	
log(level, msg, *args, **kwargs)

	

	
class vermouth.log_helpers.TypeAdapter(logger, extra=None, default_type='general')

	Bases: vermouth.log_helpers.PassingLoggerAdapter

Logging adapter that takes the type keyword argument passed to logging
calls and passes adds it to the extra attribute.

	Parameters

	
	logger (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger] or logging.LoggerAdapter [https://docs.python.org/3/library/logging.html#logging.LoggerAdapter]) – As described in logging.LoggerAdapter [https://docs.python.org/3/library/logging.html#logging.LoggerAdapter].

	extra (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – As described in logging.LoggerAdapter [https://docs.python.org/3/library/logging.html#logging.LoggerAdapter].

	default_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the messages if none is given.

	
process(msg, kwargs)

	

	
vermouth.log_helpers.get_logger(name)

	Convenience method that wraps a TypeAdapter around
logging.getLogger(name)

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the logger to get. Passed to logging.getLogger() [https://docs.python.org/3/library/logging.html#logging.getLogger].
Should probably be __name__.

	
vermouth.log_helpers.ignore_warnings_and_count(counter, specifications, level=30)

	Count the warnings after deducting the ones to ignore.

Warnings to ignore are specified as tuple (<warning-type>, <count>).
The count is None if all warnings of that type should be ignored,
and the warning type is None to indicate that the count is about
all not specified types.

In case the same type is specified more than once, only the higher
count is used.

 VerMoUTH 0.9

vermouth.map_input module

Read force field to force field mappings.

	
vermouth.map_input.combine_mappings(known_mappings, partial_mapping)

	Update a collection of mappings.

Add the mappings from the ‘partial_mapping’ argument into the
‘known_mappings’ collection. Both arguments are collections of mappings
similar to the output of the read_mapping_directory() function. They
are dictionary with 3 levels of keys: the name of the initial force field,
the name of the target force field, and the name of the block. The values
in the third level dictionary are tuples of (mapping, weights, extra).

If a force field appears in ‘partial_mapping’ that is not in
‘known_mappings’, then it is added. For existing pairs of initial and
target force fields, the blocks are updated and the version in
‘partial_mapping’ is kept in priority.

	Parameters

	
	known_mappings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Collection of mapping to update in-place.

	partial_mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Collection of mappings to update from.

	
vermouth.map_input.generate_all_self_mappings(force_fields)

	Generate self mappings for a list of force fields.

	Parameters

	force_fields (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – List of instances of ForceField.

	Returns

	A collection of mappings formatted as the output of the
read_mapping_directory() function.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
vermouth.map_input.generate_self_mappings(blocks)

	Generate self mappings from a collection of blocks.

A self mapping is a mapping that maps a force field to itself. Applying
such mapping is applying a neutral transformation.

	Parameters

	blocks (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]]) – A dictionary of blocks with block names as keys and the blocks
themselves as values. The blocks must be instances of networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]
with each node having an ‘atomname’ attribute.

	Returns

	mappings – A dictionary of mappings where the keys are the names of the blocks,
and the values are tuples like (mapping, weights, extra).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – Raised if a node does not have am ‘atomname’ attribute.

See also

	read_mapping_file()

	Read a mapping from a file.

	generate_all_self_mappings()

	Generate self mappings for a list of force fields.

	
vermouth.map_input.make_mapping_object(from_block, to_block, mapping, weights, extra, name_to_index)

	Convenience method for creating modern vermouth.map_parser.Mapping
objects from old style mapping information.

	Parameters

	
	from_blocks (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][vermouth.molecule.Block]) –

	to_blocks (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][vermouth.molecule.Block]) –

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – Old style mapping describing what (resid, atomname) maps to what
(resid, atomname)

	weights (dict [https://docs.python.org/3/library/stdtypes.html#dict][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], dict [https://docs.python.org/3/library/stdtypes.html#dict][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], float [https://docs.python.org/3/library/functions.html#float]]]) – Old style weights, mapping (resid, atomname), (resid, atomname) to a
weight.

	extra (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) –

	name_to_index (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]]]) – Dict force field names, block names, atomnames to node indices.

	Returns

	The created mapping.

	Return type

	vermouth.map_parser.Mapping

	
vermouth.map_input.read_backmapping_file(lines, force_fields)

	Partial reader for modified Backward mapping files.

Read mappings from a Backward mapping file. Not all fields are supported,
only the “molecule” and the “atoms” fields are read. If not explicitly
specified, the origin force field for a molecule is assumed to be
“universal”, and the destination force field is assumed to be “martini22”.

The mapping collection is a 3 level dictionary where the first key is the
name of the initial force field, the second key is the name of the
destination force field, and the third key is the name of the molecule.

	Parameters

	
	lines (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Collection of lines to read.

	force_fields (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], vermouth.forcefield.ForceField]) – Dict of known force fields.

	Returns

	

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
vermouth.map_input.read_mapping_directory(directory, force_fields)

	Read all the mapping files in a directory.

The resulting mapping collection is a 3-level dict where the keys are:
* the name of the origin force field
* the name of the destination force field
* the name of the residue

The values after these 3 levels is a mapping dict where the keys are the
atom names in the origin force field and the values are lists of names in
the destination force field.

	Parameters

	
	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the directory to search. Files with a ‘.backmap’ extension
will be read. There is no recursive search.

	force_fields (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], ForceField]) – Dict of known forcefields

	Returns

	A collection of mappings.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
vermouth.map_input.read_mapping_file(lines, force_fields)

	

 VerMoUTH 0.9

vermouth.map_parser module

Contains the Mapping object and the associated parser.

	
class vermouth.map_parser.Mapping(block_from, block_to, mapping, references, ff_from=None, ff_to=None, extra=(), normalize_weights=False, type='block', names=())

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A mapping object that describes a mapping from one resolution to another.

	
block_from

	The graph which this Mapping object can transform.

	Type

	networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]

	
block_to

	The vermouth.molecule.Block we can transform to.

	Type

	vermouth.molecule.Block

	
references

	A mapping of node keys in block_to to node keys in
block_from that describes which node in blocks_from should be
taken as a reference when determining node attributes for nodes in
block_to.

	Type

	collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]

	
ff_from

	The forcefield of block_from.

	Type

	vermouth.forcefield.ForceField

	
ff_to

	The forcefield of block_to.

	Type

	vermouth.forcefield.ForceField

	
names

	The names of the mapped blocks.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
mapping

	The actual mapping that describes for every node key in
block_from to what node key in block_to it
contributes to with what weight.
{node_from: {node_to: weight, ...}, ...}.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], float [https://docs.python.org/3/library/functions.html#float]]]

Note

Only nodes described in mapping will be used.

	Parameters

	
	block_from (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – As per block_from.

	block_to (vermouth.molecule.Block) – As per block_to.

	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], dict [https://docs.python.org/3/library/stdtypes.html#dict][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable], float [https://docs.python.org/3/library/functions.html#float]]]) – As per mapping.

	references (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]) – As per references.

	ff_from (vermouth.forcefield.ForceField) – As per ff_from.

	ff_to (vermouth.forcefield.ForceField) – As per ff_to.

	extra (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Extra information to be attached to block_to.

	normalize_weights (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the weights should be normalized such that the sum of the
weights of nodes mapping to something is 1.

	names (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – As per names.

	
map(graph, node_match=None, edge_match=None)

	Performs the partial mapping described by this object on graph. It
first find the induced subgraph isomorphisms between graph and
block_from, after which it will process the found isomorphisms
according to mapping.

None of the yielded dictionaries will refer to node keys of
block_from. Instead, those will be translated to node keys of
graph based on the found isomorphisms.

Note

Only nodes described in mapping will be used in the
isomorphism.

	Parameters

	
	graph (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The graph on which this partial mapping should be applied.

	node_match (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable] or None [https://docs.python.org/3/library/constants.html#None]) – A function that should take two dictionaries with node attributes,
and return True if those nodes should be considered equal, and
False otherwise. If None, all nodes will be considered equal.

	edge_match (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable] or None [https://docs.python.org/3/library/constants.html#None]) – A function that should take six arguments: two graphs, and four
node keys. The first two node keys will be in the first graph and
share an edge; and the last two node keys will be in the second
graph and share an edge. Should return True if a pair of edges
should be considered equal, and False otherwise. If None, all
edges will be considered equal.

	Yields

	
	dict[collections.abc.Hashable, dict[collections.abc.Hashable, float]] – the correspondence between nodes in graph and nodes in
block_to, with the associated weights.

	vermouth.molecule.Block – block_to.

	dict – references on which mapping has been applied.

	
reverse_mapping

	The reverse of mapping.
{node_to: {node_from: weight, ...}, ...}

	
class vermouth.map_parser.MappingBuilder

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An object that is in charge of building the arguments needed to create a
Mapping object. It’s attributes describe the information
accumulated so far.

	
mapping

	
	Type

	collections.defaultdict [https://docs.python.org/3/library/collections.html#collections.defaultdict]

	
blocks_from

	
	Type

	None [https://docs.python.org/3/library/constants.html#None] or vermouth.molecule.Block

	
blocks_to

	
	Type

	None [https://docs.python.org/3/library/constants.html#None] or vermouth.molecule.Block

	
ff_from

	
	Type

	None [https://docs.python.org/3/library/constants.html#None] or vermouth.forcefield.ForceField

	
ff_to

	
	Type

	None [https://docs.python.org/3/library/constants.html#None] or vermouth.forcefield.ForceField

	
names

	
	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
references

	
	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
add_block_from(block)

	Add a block to blocks_from. In addition, apply any ‘replace’
operation described by nodes on themselves:

{'atomname': 'C', 'charge': 0, 'replace': {'charge': -1}}

becomes:

{'atomname': 'C', 'charge': -1}

	Parameters

	block (vermouth.molecule.Block) – The block to add.

	
add_block_to(block)

	Add a block to blocks_to.

	Parameters

	block (vermouth.molecule.Block) – The block to add.

	
add_edge_from(attrs1, attrs2, edge_attrs)

	Add a single edge to blocks_from between two nodes in
blocks_from described by attrs1 and attrs2. The nodes
described should not be the same.

	Parameters

	
	attrs1 (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that uniquely describe a node in
blocks_from

	attrs2 (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that uniquely describe a node in
blocks_from

	edge_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that should be assigned to the new edge.

	
add_edge_to(attrs1, attrs2, edge_attrs)

	Add a single edge to blocks_to between two nodes in
blocks_to described by attrs1 and attrs2. The nodes
described should not be the same.

	Parameters

	
	attrs1 (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that uniquely describe a node in
blocks_to

	attrs2 (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that uniquely describe a node in
blocks_to

	edge_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that should be assigned to the new edge.

	
add_mapping(attrs_from, attrs_to, weight)

	Add part of a mapping to mapping. attrs_from uniquely
describes a node in blocks_from and attrs_to a node in
blocks_to. Adds a mapping between those nodes with the given
weight.

	Parameters

	
	attrs_from (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that uniquely describe a node in
blocks_from

	attrs_to (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that uniquely describe a node in
blocks_to

	weight (float [https://docs.python.org/3/library/functions.html#float]) – The weight associated with this partial mapping.

	
add_name(name)

	Add a name to the mapping.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to add

	
add_node_from(attrs)

	Add a single node to blocks_from.

	Parameters

	attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes the new node should have.

	
add_node_to(attrs)

	Add a single node to blocks_to.

	Parameters

	attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes the new node should have.

	
add_reference(attrs_to, attrs_from)

	Add a reference to references.

	Parameters

	
	attrs_to (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that uniquely describe a node in
blocks_to

	attrs_from (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The attributes that uniquely describe a node in
blocks_from

	
from_ff(ff_name)

	Sets ff_from

	Parameters

	ff_name –

	
get_mapping(type)

	Instantiate a Mapping object with the information accumulated
so far, and return it.

	Returns

	The mapping object made from the accumulated information.

	Return type

	Mapping

	
reset()

	Reset the object to a clean initial state.

	
to_ff(ff_name)

	Sets ff_to

	Parameters

	ff_name –

	
class vermouth.map_parser.MappingDirector(force_fields, builder=None)

	Bases: vermouth.parser_utils.SectionLineParser

A director in charge of parsing the new mapping format. It constructs a new
Mapping object by calling methods of it’s builder (default
MappingBuilder) with the correct arguments.

	Parameters

	
	force_fields (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], ForceField]) – Dict of known force fields.

	builder (MappingBuilder) –

	
builder

	The builder used to build the Mapping object. By default
MappingBuilder.

	
identifiers

	All known identifiers at this point. The key is the actual identifier,
prefixed with either “to_” or “from_”, and the values are the
associated node attributes.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
section

	The name of the section currently being processed.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
from_ff

	The name of the forcefield from which this mapping describes a
transfomation.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
to_ff

	The name of the forcefield to which this mapping describes a
transfomation.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
macros

	A dictionary of known macros.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
COMMENT_CHAR = ';'

	The character that starts a comment.

	
METH_DICT = {('block', 'from'): (<function MappingDirector._ff>, {'direction': 'from'}), ('block', 'from blocks'): (<function MappingDirector._blocks>, {'direction': 'from', 'map_type': 'block'}), ('block', 'from edges'): (<function MappingDirector._edges>, {'direction': 'from'}), ('block', 'from nodes'): (<function MappingDirector._nodes>, {'direction': 'from'}), ('block', 'mapping'): (<function MappingDirector._mapping>, {}), ('block', 'reference atoms'): (<function MappingDirector._reference_atoms>, {}), ('block', 'to'): (<function MappingDirector._ff>, {'direction': 'to'}), ('block', 'to blocks'): (<function MappingDirector._blocks>, {'direction': 'to', 'map_type': 'block'}), ('block', 'to edges'): (<function MappingDirector._edges>, {'direction': 'to'}), ('block', 'to nodes'): (<function MappingDirector._nodes>, {'direction': 'to'}), ('macros',): (<function SectionLineParser._macros>, {}), ('modification', 'from'): (<function MappingDirector._ff>, {'direction': 'from'}), ('modification', 'from blocks'): (<function MappingDirector._blocks>, {'direction': 'from', 'map_type': 'modification'}), ('modification', 'from edges'): (<function MappingDirector._edges>, {'direction': 'from'}), ('modification', 'from nodes'): (<function MappingDirector._nodes>, {'direction': 'from'}), ('modification', 'mapping'): (<function MappingDirector._mapping>, {}), ('modification', 'reference atoms'): (<function MappingDirector._reference_atoms>, {}), ('modification', 'to'): (<function MappingDirector._ff>, {'direction': 'to'}), ('modification', 'to blocks'): (<function MappingDirector._blocks>, {'direction': 'to', 'map_type': 'modification'}), ('modification', 'to edges'): (<function MappingDirector._edges>, {'direction': 'to'}), ('modification', 'to nodes'): (<function MappingDirector._nodes>, {'direction': 'to'}), ('molecule',): (<function MappingDirector._molecule>, {})}

	

	
NO_FETCH_BLOCK = '!'

	The character that specifies no block should be fetched automatically.

	
RESIDUE_ATOM_SEP = ':'

	The character that separates a residue identifier from an atomname.

	
RESNAME_NUM_SEP = '#'

	The character that separates a resname from a resnumber in shorthand block
formats.

	
SECTION_ENDS = ['block', 'modification']

	

	
finalize_section(previous_section, ended_section)

	Wraps up parsing of a single mapping.

	Parameters

	
	previous_section (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The previously parsed section.

	ended_section (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The just finished sections.

	Returns

	The accumulated mapping if the mapping is complete, None otherwise.

	Return type

	Mapping or None [https://docs.python.org/3/library/constants.html#None]

	
vermouth.map_parser.parse_mapping_file(filepath, force_fields)

	Parses a mapping file.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path of the file to parse.

	force_fields (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], ForceField]) – Dict of known forcefields

	Returns

	A list of all mappings described in the file.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][Mapping]

 VerMoUTH 0.9

vermouth.molecule module

	
class vermouth.molecule.Block(incoming_graph_data=None, **attr)

	Bases: vermouth.molecule.Molecule

Residue topology template

Two blocks are equal if the underlying molecules are equal, and if the
block names are equal.

	Parameters

	
	incoming_graph_data – Data to initialize graph. If None (default) an empty graph is created.

	attr – Attributes to add to graph as key=value pairs.

	
name

	The name of the residue. Set to None if undefined.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
add_atom(atom)

	Add an atom. atom must contain an ‘atomname’. This value will be this
atom’s index.

	Parameters

	atom (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]) – The attributes of the atom to add. Must contain ‘atomname’

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If atom does not contain ‘atomname’

	
atoms

	”
The atoms in the residue. Each atom is a dict with a minima a key
‘name’ for the name of the atom, and a key ‘atype’ for the atom type.
An atom can also have a key ‘charge’, ‘charge_group’, ‘comment’, or any
arbitrary key.

	Returns

	

	Return type

	collections.abc.Iterator [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
guess_angles()

	Generates all possible triplets of node indices that correspond to
angles.

	Yields

	tuple[collections.abc.Hashable, collections.abc.Hashable, collections.abc.Hashable] – All possible angles.

	
guess_dihedrals(angles=None)

	Generates all possible quadruplets of node indices that correspond to
torsion angles.

	Parameters

	angles (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – All possible angles from which to start looking for torsion angles.
Generated from guess_angles() if not provided.

	Yields

	tuple[collections.abc.Hashable, collections.abc.Hashable, collections.abc.Hashable, collections.abc.Hashable] – All possible torsion angles.

	
has_dihedral_around(center)

	Returns True if the block has a dihedral centered around the given bond.

	Parameters

	center (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The name of the two central atoms of the dihedral angle. The
method is sensitive to the order.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_improper_around(center)

	Returns True if the block has an improper centered around the given bond.

	Parameters

	center (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The name of the two central atoms of the improper torsion. The
method is sensitive to the order.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
node_dict_factory

	alias of collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
to_molecule(atom_offset=0, offset_resid=0, offset_charge_group=0, force_field=None, default_attributes=None)

	Converts this block to a Molecule.

	Parameters

	
	atom_offset (int [https://docs.python.org/3/library/functions.html#int]) – The number at which to start numbering the node indices.

	offset_resid (int [https://docs.python.org/3/library/functions.html#int]) – The offset for the resid attributes.

	offset_charge_group (int [https://docs.python.org/3/library/functions.html#int]) – The offset for the charge_group attributes.

	force_field (None [https://docs.python.org/3/library/constants.html#None] or vermouth.forcefield.ForceField) –

	default_attributes (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Attributes to set to for nodes that are missing them.

	Returns

	This block as a molecule.

	Return type

	Molecule

	
class vermouth.molecule.Choice(value)

	Bases: vermouth.molecule.LinkPredicate

Test if an attribute is defined and in a predefined list.

	Parameters

	value (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of value in which to look for the attribute.

	
match(node, key)

	Apply the comparison.

	
class vermouth.molecule.DeleteInteraction(atoms, atom_attrs, parameters, meta)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Create new instance of DeleteInteraction(atoms, atom_attrs, parameters, meta)

	
atom_attrs

	Alias for field number 1

	
atoms

	Alias for field number 0

	
meta

	Alias for field number 3

	
parameters

	Alias for field number 2

	
class vermouth.molecule.Interaction(atoms, parameters, meta)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Create new instance of Interaction(atoms, parameters, meta)

	
atoms

	Alias for field number 0

	
meta

	Alias for field number 2

	
parameters

	Alias for field number 1

	
class vermouth.molecule.Link(incoming_graph_data=None, **attr)

	Bases: vermouth.molecule.Block

Template link between two residues.

Two links are equal if:

	the underlying molecules are equal

	the names are equal

	the negative edges (“non-edges”) are equal regardless of order

	the interactions to remove are the same and in the same order

	the meta variables are equal

	the pattern definitions are equal and in the same order

	the features are equals regardless of order

A link does not match if any of the non-edges match the target; their
order therefore is not important. Same goes for features that just need to
be present or not. The order does matter however for interactions to remove
as removing the interactions in a different order may lead to a different
set of remaining interactions.

	Parameters

	
	incoming_graph_data – Data to initialize graph. If None (default) an empty graph is created.

	attr – Attributes to add to graph as key=value pairs.

	
node_dict_factory

	alias of collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
same_non_edges(other)

	Returns True if all the non-edges of an other link are equal to
those of this link. Returns False otherwise.

	
class vermouth.molecule.LinkParameterEffector(keys, format_spec=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Rule to calculate an interaction parameter in a link.

This class allows to store dynamic parameters in link interactions. The
value of the parameter can be computed from the graph using the node keys
given when creating the instance.

An instance of this class is first initialized with a list of node keys
from the link in which it is defined. The instance is latter called
like a function, and takes as arguments a molecule and a match dictionary
linking the link nodes with the molecule ones. The format of the dictionary
is expected to be {link key: molecule key}.

An instance can also have a format defined. If defined, that format will be
applied to the value computed by the _apply() method causing the
output to be a string. The format is given as a ‘format_spec’ from the
python format string syntax. This format spec corresponds to what follows
the column the column in string templates. For instance, formating a
floating number to have 2 decimal places will be obtained by setting format
to .2f. If no format is defined, then the calculated value is not
modified.

This is a base class; it needs to be subclassed. A subclass must define an
_apply() method that takes a molecule and a list of node keys from
that molecule as arguments. This method is not called directly by the user,
instead it is called by the __call__() method when the user calls the
instance as a function. A subclass can also set the n_keys_asked
class attribute to the number of required keys. If the
attribute is set, then the number of keys provided when initializing a new
instance will be validated against that number; else, the user can pass an
arbitrary number of keys without validation.

	
__call__(molecule, match)

	
	Parameters

	
	molecule (Molecule) – The molecule from which to calculate the parameter value.

	match (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The correspondence between the nodes from the link (keys), and the
nodes from the molecule (values).

	Returns

	The calculated parameter value, formatted if required.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
_apply(molecule, keys)

	Calculate the parameter value from the molecule.

Notes

This method must be defined in a subclass.

	Parameters

	
	molecule (Molecule) – The molecule from which to compute the parameter value.

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of keys to use from the molecule.

	Returns

	The value for the parameter.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Parameters

	
	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of node keys from the link. If the n_keys_asked
class argument is set, the number of keys must correspond to the
value of the attribute.

	format_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format specification.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised if the n_keys_asked class attribute is set and the
number of keys does not correspond.

	
n_keys_asked = None

	Class attribute describing the number of keys required.

	
class vermouth.molecule.LinkPredicate(value)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Comparison criteria for node and molecule attributes in links.

When comparing an attribute from a link to a corresponding attribute from
a molecule or a molecule node, the default behavior is to use the equality
as criterion for the correspondence. Some correspondence, however must be
broader for the link to be usable. Such alternative criteria are defined
as link predicates.

If an attribute in a link is set to an instance of a predicate, then the
correspondence is defined as the boolean result of the match method.

This is the base class for such predicate. It must be subclassed, and
subclasses must define a match() method that takes a dictionary and
a potential key from that dictionary as arguments.

	Parameters

	value – The per-instance value that serve as reference. How this value is
treated depends on the subclass.

	
match(node, key)

	Do the comparison with the reference value.

Notes

This function must be defined by the subclasses. This docstring
describe the expected format of the method.

	Parameters

	
	node (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of attributes in which to look up. This can be a
node dictionary of a molecule meta attribute.

	key – A potential key from the node dictionary.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class vermouth.molecule.Modification(incoming_graph_data=None, **attr)

	Bases: vermouth.molecule.Link

A modification which describes deviations from a Block.

	
class vermouth.molecule.Molecule(*args, **kwargs)

	Bases: networkx.classes.graph.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]

Represents a molecule as per a specific force field. Consists of atoms
(nodes), bonds (edges) and interactions such as angle potentials.

Two molecules are equal if:

	the exclusion distance (nrexcl) are equal

	the force fields are equal (but may be different instances)

	the nodes are equal and in the same order

	the edges are equal (but order is not accounted for)

	the interactions are the same and in the same order within an interaction
type

When comparing molecules, the order of the nodes is considered as it
determines in what order atoms will be written in the output. Same goes for
the interactions within an interaction type. The order of edges is not
guaranteed anywhere in the code, and they are not writen in the output.

	
meta

	
	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
nrexcl

	
	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
interactions

	All the known interactions. Each item of the dictionary is a type of
interaction, with the key being the name of the kind of interaction
using Gromacs itp/rtp conventions (‘bonds’, ‘angles’, …) and the
value being a list of all the interactions of that type in the residue.
An interaction is a dict with a key ‘atoms’ under which is stored the
list of the atoms involved (referred by their name), a key ‘parameters’
under which is stored an arbitrary list of non-atom parameters as
written in a RTP file, and arbitrary keys to store custom metadata. A
given interaction can have a comment under the key ‘comment’.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][Interaction]]

	
citations

	The citation keys associated with this molecule.

	Type

	set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
add_interaction(type_, atoms, parameters, meta=None)

	Add an interaction of the specified type with the specified parameters
involving the specified atoms.

	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of interaction, such as ‘bonds’ or ‘angles’.

	atoms (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]) – The atoms that are involved in this interaction. Must be in this
molecule

	parameters (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – The parameters for this interaction.

	meta (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]) – Metadata for this interaction, such as comments to be written to
the output.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If one of the atoms is not in this molecule.

	
add_node(*args, **kwargs)

	

	
add_or_replace_interaction(type_, atoms, parameters, meta=None, citations=None)

	Adds a new interaction if it doesn’t exists yet, and replaces it
otherwise. Interactions are deemed the same if they’re the same type,
and they involve the same atoms, and their meta['version'] is the
same.

	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of interaction, such as ‘bonds’ or ‘angles’.

	atoms (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]) – The atoms that are involved in this interaction. Must be in this
molecule

	parameters (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – The parameters for this interaction.

	meta (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]) – Metadata for this interaction, such as comments to be written to
the output.

	citations (set [https://docs.python.org/3/library/stdtypes.html#set]) – set of citations that apply when this link is addded to molecule

See also

add_interaction()

	
atoms

	All atoms in this molecule. Alias for nodes.

	
copy()

	Creates a copy of the molecule.

	Returns

	

	Return type

	Molecule

	
edges_between(n_bunch1, n_bunch2, data=False)

	Returns all edges in this molecule between nodes in n_bunch1 and
n_bunch2.

	Parameters

	
	n_bunch1 (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – The first bunch of node indices.

	n_bunch2 (Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – The second bunch of node indices.

	Returns

	A list of tuples of edges in this molecule. The first element of
the tuple will be in n_bunch1, the second element in n_bunch2.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
find_atoms(**attrs)

	Yields all indices of atoms that match attrs

	Parameters

	**attrs (collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping]) – The attributes and their desired values.

	Yields

	collections.abc.Hashable – All atom indices that match the specified attrs

	
force_field

	The force field the molecule is described for.

The force field is assumed to be consistent for all the molecules of
a system. While it is possible to reassign attribute
Molecule._force_field, it is recommended to assign the force
field at the system level as reassigning force_field
will propagate the change to all the molecules in that system.

	
get_interaction(type_)

	Returns all interactions of type_

	Parameters

	type (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The type which interactions should be found.

	Returns

	The interactions of the specified type.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][Interaction]

	
iter_residues()

	Returns a generator over the nodes of this molecules residues.

	Returns

	

	Return type

	collections.abc.Generator [https://docs.python.org/3/library/collections.abc.html#collections.abc.Generator]

	
make_edges_from_interaction_type(type_)

	Create edges from the interactions of a given type.

The interactions must be described so that two consecutive atoms in an
interaction should be linked by an edge. This is the case for bonds,
angles, proper dihedral angles, and cmap torsions. It is not always
true for improper torsions.

Cmap are described as two consecutive proper dihedral angles. The
atoms for the interaction are the 4 atoms of the first dihedral angle
followed by the next atom forming the second dihedral angle with the
3 previous ones. Each pair of consecutive atoms generate an edge.

Warning

If there is no interaction of the required type, it will be
silently ignored.

	Parameters

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the interaction type the edges should be built from.

	
make_edges_from_interactions()

	Create edges from the interactions we know how to convert to edges.

The known interactions are bonds, angles, proper dihedral angles,
cmap torsions and constraints.

	
merge_molecule(molecule)

	Add the atoms and the interactions of a molecule at the end of this
one.

Atom and residue index of the new atoms are offset to follow the last
atom of this molecule.

	Parameters

	molecule (Molecule) – The molecule to merge at the end.

	Returns

	A dict mapping the node indices of the added molecule to their
new indices in this molecule.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
node_dict_factory

	alias of collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
remove_interaction(type_, atoms, version=0)

	Removes the specified interaction.

	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of interaction, such as ‘bonds’ or ‘angles’.

	atoms (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]) – The atoms that are involved in this interaction.

	version (int [https://docs.python.org/3/library/functions.html#int]) – Sometimes there can be multiple distinct interactions between the
same group of atoms. This is reflected with their version meta
attribute.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the specified interaction could not be found

	
remove_matching_interaction(type_, template_interaction)

	Removes any interactions that match the template.

	Parameters

	
	type (collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]) – The type of interaction to look for.

	template_interaction (Interaction) –

See also

interaction_match()

	
remove_node(node)

	Overriding the remove_node method of networkx
as we have to delete the interaction from the interactions list
separately which is not a part of the graph and hence does not
get deleted.

	
remove_nodes_from(nodes)

	Overriding the remove_nodes_from method of networkx
as we have to delete the interaction from the
interactions list separately which is not a part of
the graph and hence does not get deleted.

	
same_edges(other)

	Compare the edges between this molecule and an other.

Edges are unordered and undirected, but they can have attributes.

	Parameters

	other (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The other molecule to compare the edges with.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
same_interactions(other)

	Returns True if the interactions are the same.

To be equal, two interactions must share the same node key reference,
the same interaction parameters, and the same meta attributes. Empty
interaction categories are ignored.

	Parameters

	other (Molecule) –

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
same_nodes(other, ignore_attr=())

	Returns True if the nodes are the same and in the same order.

The equality criteria used for the attribute values are those of
vermouth.utils.are_different().

	Parameters

	
	other (Molecule) –

	ignore_attr (collections.abc.Container [https://docs.python.org/3/library/collections.abc.html#collections.abc.Container]) – Attribute keys that will not be considered in the comparison.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
share_moltype_with(other)

	Checks whether other has the same shape as this molecule.

	Parameters

	other (Molecule) –

	Returns

	True iff other has the same shape as this molecule.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
static sort_interactions(all_interactions)

	Returns keys in interactions sorted by (number_of_atoms, name). Keys
with no interactions are skipped.

	
subgraph(nodes)

	Creates a subgraph from the molecule.

	Returns

	

	Return type

	Molecule

	
class vermouth.molecule.NotDefinedOrNot(value)

	Bases: vermouth.molecule.LinkPredicate

Test if an attribute is not the reference value.

This test passes if the attribute is not defined, if it is set to None,
or if its value is different from the reference.

Notes

If the reference is set to None, then the test does not pass if the
attribute is explicitly set to None. It still passes if the attribute
is not defined.

	Parameters

	value – The value the attribute is tested not to be.

	
match(node, key)

	Apply the comparison.

	
class vermouth.molecule.ParamAngle(keys, format_spec=None)

	Bases: vermouth.molecule.LinkParameterEffector

Calculate the angle in degrees between three consecutive nodes.

	Parameters

	
	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of node keys from the link. If the n_keys_asked
class argument is set, the number of keys must correspond to the
value of the attribute.

	format_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format specification.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised if the n_keys_asked class attribute is set and the
number of keys does not correspond.

	
n_keys_asked = 3

	

	
class vermouth.molecule.ParamDihedral(keys, format_spec=None)

	Bases: vermouth.molecule.LinkParameterEffector

Calculate the dihedral angle in degrees defined by four nodes.

	Parameters

	
	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of node keys from the link. If the n_keys_asked
class argument is set, the number of keys must correspond to the
value of the attribute.

	format_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format specification.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised if the n_keys_asked class attribute is set and the
number of keys does not correspond.

	
n_keys_asked = 4

	

	
class vermouth.molecule.ParamDihedralPhase(keys, format_spec=None)

	Bases: vermouth.molecule.LinkParameterEffector

Calculate the dihedral angle in degrees defined by four nodes shifted by
-180 degrees.

	Parameters

	
	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of node keys from the link. If the n_keys_asked
class argument is set, the number of keys must correspond to the
value of the attribute.

	format_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format specification.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised if the n_keys_asked class attribute is set and the
number of keys does not correspond.

	
n_keys_asked = 4

	

	
class vermouth.molecule.ParamDistance(keys, format_spec=None)

	Bases: vermouth.molecule.LinkParameterEffector

Calculate the distance between a pair of nodes.

	Parameters

	
	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of node keys from the link. If the n_keys_asked
class argument is set, the number of keys must correspond to the
value of the attribute.

	format_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – Format specification.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised if the n_keys_asked class attribute is set and the
number of keys does not correspond.

	
n_keys_asked = 2

	

	
vermouth.molecule.attributes_match(attributes, template_attributes, ignore_keys=())

	Compare a dict of attributes from a molecule with one from a link.

Returns True if the attributes from the link match the ones from the
molecule; returns False otherwise. The attributes from a link match
with those of a molecule is all the individual attribute from the link
match the corresponding ones in the molecule. In the simplest case, these
attribute match if their values are equal. If the value of the link
attribute is an instance of LinkPredicate, then the attributes
match if the match method of the predicate returns True.

	Parameters

	
	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Attributes from the molecule.

	template_attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Attributes from the link.

	ignore_keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of keys to ignore from ‘template_attributes’.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.molecule.interaction_match(molecule, interaction, template_interaction)

	Compare an interaction with a template interaction or interaction to delete.

An instance of Interaction matches a template instance of the same
class or of DeleteInteraction if, at the minimum, it involves the
same atoms in the same order. If the template defines parameters, then they
have to match as well. In the case of of a DeleteInteraction,
atoms may have attributes as well, then they have to match with the
attributes of the corresponding atoms in the molecule.

	Parameters

	
	molecule (networkx.Graph [https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph]) – The molecule that contains the interaction.

	interaction (Interaction) – The interaction in the molecule.

	template_interaction (Interaction or DeleteInteraction) – The template to match with the interaction.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

attributes_match()

 VerMoUTH 0.9

vermouth.parser_utils module

Helper functions for parsers

	
class vermouth.parser_utils.LineParser

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that describes a parser object that parses a file line by line.
Subclasses will probably want to override the methods dispatch(),
parse_line(), and/or finalize():

	dispatch() is called for every line and should return the
function that should be used to parse that line.

	parse_line() is called by the default implementation of
dispatch() for every line.

	finalize() is called at the end of the file.

	
COMMENT_CHAR = '#'

	

	
dispatch(line)

	Finds the correct method to parse line. Always returns
parse_line().

	
finalize(lineno=0)

	Wraps up. Is called at the end of the file.

	
parse(file_handle)

	Reads lines from file_handle, and calls dispatch() to find
which method to call to do the actual parsing. Yields the result of
that call, if it’s not None.
At the end, calls finalize(), and yields its results, iff
it’s not None.

	Parameters

	file_handle (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The data to parse. Should produce lines of data.

	Yields

	object – The results of dispatching to parsing methods, and of
finalize().

	
parse_line(line, lineno)

	Does nothing and should be overridden by subclasses.

	
class vermouth.parser_utils.SectionLineParser(*args, **kwargs)

	Bases: vermouth.parser_utils.LineParser

Baseclass for all parsers that have to parse file formats that are based on
sections. Parses the macros section.
Subclasses will probably want to override finalize() and/or
finalize_section().

finalize_section() is called with the previous section whenever a
section ends.

	
section

	The current section.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
macros

	A set of subsitution rules as parsed from a macros section.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
METH_DICT = {('macros',): (<function SectionLineParser._macros>, {})}

	A dict of all known parser methods, mapping section names to the
function to be called and the associated keyword arguments.

	
dispatch(line)

	Looks at line to see what kind of line it is, and returns either
parse_header() if line is a section header or
parse_section() otherwise. Calls is_section_header() to see
whether line is a section header or not.

	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	The method that should be used to parse line.

	Return type

	collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]

	
finalize(lineno=0)

	Called after the last line has been parsed to wrap up. Resets
the instance and calls finalize_section().

	Parameters

	lineno (int [https://docs.python.org/3/library/functions.html#int]) – The line number.

	
finalize_section(previous_section, ended_section)

	Called once a section is finished. Currently does nothing.

	Parameters

	
	previous_section (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The last parsed section.

	ended_section (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The sections that have been ended.

	
static is_section_header(line)

	
	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – A line of text.

	Returns

	True iff line is a section header.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – The line starts like a section header but looks misformatted.

	
parse_header(line, lineno=0)

	Parses a section header with line number lineno. Sets section
when applicable. Does not check whether line is a valid section
header.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	lineno (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	The result of calling finalize_section(), which is called
if a section ends.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the section header is unknown.

	
parse_section(line, lineno)

	Parse line with line number lineno by looking up the section in
METH_DICT and calling that method.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	lineno (int [https://docs.python.org/3/library/functions.html#int]) –

	Returns

	The result returned by calling the registered method.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
class vermouth.parser_utils.SectionParser

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Metaclass (!) that populates the METH_DICT attribute of new classes. The
contents of METH_DICT are set by reading the _section_names attribute
of all its attributes. You can conveniently set _section_names attributes
using the section_parser() decorator.

	
static section_parser(*names, **kwargs)

	
	Parameters

	
	names (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][collections.abc.Hashable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable]]) – The section names that should be associated with the decorated
function.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The keyword arguments with which the decorated function should be
called.

	
vermouth.parser_utils.split_comments(line, comment_char=';')

	Splits line at the first occurence of comment_char.

	Parameters

	
	line (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	comment_char (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	line before and after comment_char, respectively. If line does
not contain comment_char, the second element will be an empty string.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

 VerMoUTH 0.9

vermouth.selectors module

Provides helper function for selecting part of a system, e.g. all proteins, or
protein backbones.

	
vermouth.selectors.filter_minimal(molecule, selector)

	Yield the atom keys that match the selector.

The selector must be a function that accepts an atom as a argument. The
atom is passed as a node attribute dictionary. The selector must return
True for atoms to keep in the selection.

The function can be used to build a subgraph that only contains the
selection:

selection = molecule.subgraph(
 filter_minimal(molecule, selector_function)
)

	Parameters

	
	molecule (Molecule) –

	selector (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) –

	Yields

	collections.abc.Hashable – Keys of the atoms that match the selection.

	
vermouth.selectors.is_protein(molecule)

	Return True if all the residues in the molecule are protein residues.

The function tests if the residue name of all the atoms in the input
molecule are in PROTEIN_RESIDUES.

	Parameters

	molecule (Molecule) – The molecule to test.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.selectors.proto_multi_templates(node, templates, ignore_keys=())

	Return True is the node matched one of the templates.

	Parameters

	
	node (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The atom/node to consider.

	templates (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of node templates to compare to the node.

	ignore_keys (collections.abc.Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection]) – List of keys to ignore from the templates.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

See also

vermouth.molecule.attributes_match()

	
vermouth.selectors.proto_select_attribute_in(node, attribute, values)

	Return True if the given attribute of the node is in a list of values.

To be used as a selector, the function must be wrapped in a way that it can
be called without the need to explicitly specify the ‘attribute’ and
‘values’ arguments. This can be done using functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial]:

>>> # select an atom if its name is in a given list
>>> to_keep = ['BB', 'SC1']
>>> select_name_in = functools.partial(
... proto_select_attribute_in,
... attribute='atomname',
... values=to_keep
...)
>>> select_name_in(node)

	Parameters

	
	node (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The atom/node to consider.

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to look at in the node.

	values (list [https://docs.python.org/3/library/stdtypes.html#list]) – The values the node attribute can take for the node to be selected.

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.selectors.select_all(_)

	Returns True for all particles.

	
vermouth.selectors.select_backbone(node)

	Returns True if node is in a protein backbone.

	
vermouth.selectors.selector_has_position(atom)

	Return True if the atom have a position.

An atom is considered as not having a position if:
* the “position” key is not defined;
* the value of “position” is None;
* the coordinates are not finite numbers.

	Parameters

	atom (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	Returns

	

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

 VerMoUTH 0.9

vermouth.system module

Provides a class to describe a system.

	
class vermouth.system.System(force_field=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A system of molecules.

	
molecules

	The molecules in the system.

	Type

	list[Molecule]

	
add_molecule(molecule)

	Add a molecule to the system.

	Parameters

	molecule (Molecule) –

	
copy()

	Creates a copy of this system and it’s molecules.

	Returns

	A deep copy of this system.

	Return type

	System

	
force_field

	The forcefield used to describe the molecules in this system.

	
num_particles

	The total number of particles in all the molecules in this system.

 VerMoUTH 0.9

vermouth.truncating_formatter module

Provides a string formatter that can not only pad strings to a specified
length if they’re too short, but also truncate them if they’re too long.

	
class vermouth.truncating_formatter.FormatSpec(fill, align, sign, alt, zero_padding, width, comma, decimal, precision, type)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Create new instance of FormatSpec(fill, align, sign, alt, zero_padding, width, comma, decimal, precision, type)

	
align

	Alias for field number 1

	
alt

	Alias for field number 3

	
comma

	Alias for field number 6

	
decimal

	Alias for field number 7

	
fill

	Alias for field number 0

	
precision

	Alias for field number 8

	
sign

	Alias for field number 2

	
type

	Alias for field number 9

	
width

	Alias for field number 5

	
zero_padding

	Alias for field number 4

	
class vermouth.truncating_formatter.TruncFormatter

	Bases: string.Formatter [https://docs.python.org/3/library/string.html#string.Formatter]

Adds the ‘t’ option to the format specification mini-language at the end of
the format string. If provided, the produced formatted string will be
truncated to the specified length.

	
format_field(value, format_spec)

	Implements the ‘t’ option to truncate strings that are too long to the
required width.

	Parameters

	
	value – The object to format.

	format_spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format_spec describing how value should be formatted

	Returns –

	str – value formatted as per format_spec

	
format_spec_re = re.compile('(([\\s\\S])?([<>=\\^]))?([\\+\\-])?(#)?(0)?(\\d*)?(,)?((\\.)(\\d*))?([sbcdoxXneEfFgGn%])?')

	

 VerMoUTH 0.9

vermouth.utils module

Provides several generic utility functions

	
vermouth.utils.are_all_equal(iterable)

	Returns True if and only if all elements in iterable are equal; and
False otherwise.

	Parameters

	iterable (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – The container whose elements will be checked.

	Returns

	True iff all elements in iterable compare equal, False
otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vermouth.utils.are_different(left, right)

	Return True if two values are different from one another.

Values are considered different if they do not share the same type. In case
of numerical value, the comparison is done with numpy.isclose() [https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose] to
account for rounding. In the context of this test, nan compares equal to
itself, which is not the default behavior.

The order of mappings (dicts) is assumed to be irrelevant, so two
dictionaries are not different if the only difference is the order of the
keys.

	
vermouth.utils.first_alpha(search_string)

	Returns the first ASCII letter.

	Parameters

	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string in which to look for the first ASCII letter.

	Returns

	

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – No ASCII letter was found in ‘search_string’.

	
vermouth.utils.format_atom_string(node, atomid='', chain='', resname='', resid='', atomname='')

	

	
vermouth.utils.maxes(iterable, key=<function <lambda>>)

	Analogous to max, but returns a list of all maxima.

>>> all(key(elem) == max(iterable, key=key) for elem in iterable)
True

	Parameters

	
	iterable (collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable]) – The iterable for which to find all maxima.

	key (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) – This callable will be called on each element of iterable to evaluate
it to a value. Return values must support > and ==.

	Returns

	A list of all maximal values.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

 VerMoUTH 0.9

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vermouth	

 	
 	
 vermouth.citation_parser	

 	
 	
 vermouth.dssp	

 	
 	
 vermouth.dssp.dssp	

 	
 	
 vermouth.edge_tuning	

 	
 	
 vermouth.ffinput	

 	
 	
 vermouth.file_writer	

 	
 	
 vermouth.forcefield	

 	
 	
 vermouth.geometry	

 	
 	
 vermouth.gmx	

 	
 	
 vermouth.gmx.gro	

 	
 	
 vermouth.gmx.itp	

 	
 	
 vermouth.gmx.itp_read	

 	
 	
 vermouth.gmx.rtp	

 	
 	
 vermouth.graph_utils	

 	
 	
 vermouth.ismags	

 	
 	
 vermouth.log_helpers	

 	
 	
 vermouth.map_input	

 	
 	
 vermouth.map_parser	

 	
 	
 vermouth.molecule	

 	
 	
 vermouth.parser_utils	

 	
 	
 vermouth.pdb	

 	
 	
 vermouth.pdb.pdb	

 	
 	
 vermouth.processors	

 	
 	
 vermouth.processors.add_molecule_edges	

 	
 	
 vermouth.processors.annotate_mut_mod	

 	
 	
 vermouth.processors.apply_posres	

 	
 	
 vermouth.processors.apply_rubber_band	

 	
 	
 vermouth.processors.attach_mass	

 	
 	
 vermouth.processors.average_beads	

 	
 	
 vermouth.processors.canonicalize_modifications	

 	
 	
 vermouth.processors.do_links	

 	
 	
 vermouth.processors.do_mapping	

 	
 	
 vermouth.processors.go_vs_includes	

 	
 	
 vermouth.processors.gro_reader	

 	
 	
 vermouth.processors.locate_charge_dummies	

 	
 	
 vermouth.processors.make_bonds	

 	
 	
 vermouth.processors.merge_all_molecules	

 	
 	
 vermouth.processors.merge_chains	

 	
 	
 vermouth.processors.name_moltype	

 	
 	
 vermouth.processors.pdb_reader	

 	
 	
 vermouth.processors.processor	

 	
 	
 vermouth.processors.quote	

 	
 	
 vermouth.processors.rename_modified_residues	

 	
 	
 vermouth.processors.repair_graph	

 	
 	
 vermouth.processors.set_molecule_meta	

 	
 	
 vermouth.processors.sort_molecule_atoms	

 	
 	
 vermouth.processors.tune_cystein_bridges	

 	
 	
 vermouth.selectors	

 	
 	
 vermouth.system	

 	
 	
 vermouth.truncating_formatter	

 	
 	
 vermouth.utils	

 VerMoUTH 0.9

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__call__() (vermouth.molecule.LinkParameterEffector method)

 	
 	_apply() (vermouth.molecule.LinkParameterEffector method)

A

 	
 	active_molecule (vermouth.pdb.pdb.PDBParser attribute)

 	add_atom() (vermouth.molecule.Block method)

 	add_block_from() (vermouth.map_parser.MappingBuilder method)

 	add_block_to() (vermouth.map_parser.MappingBuilder method)

 	add_edge_from() (vermouth.map_parser.MappingBuilder method)

 	add_edge_to() (vermouth.map_parser.MappingBuilder method)

 	add_edges_at_distance() (in module vermouth.edge_tuning)

 	add_edges_threshold() (in module vermouth.edge_tuning)

 	add_element_attr() (in module vermouth.graph_utils)

 	add_inter_molecule_edges() (in module vermouth.edge_tuning)

 	add_interaction() (vermouth.molecule.Molecule method)

 	add_mapping() (vermouth.map_parser.MappingBuilder method)

 	add_molecule() (vermouth.system.System method)

 	add_name() (vermouth.map_parser.MappingBuilder method)

 	add_node() (vermouth.molecule.Molecule method)

 	add_node_from() (vermouth.map_parser.MappingBuilder method)

 	add_node_to() (vermouth.map_parser.MappingBuilder method)

 	add_or_replace_interaction() (vermouth.molecule.Molecule method)

 	add_reference() (vermouth.map_parser.MappingBuilder method)

 	add_virtual_sites() (in module vermouth.processors.go_vs_includes)

 	AddCysteinBridgesThreshold (class in vermouth.processors.tune_cystein_bridges)

 	addHandler() (vermouth.log_helpers.PassingLoggerAdapter method)

 	AddMoleculeEdgesAtDistance (class in vermouth.processors.add_molecule_edges)

 	align (vermouth.truncating_formatter.FormatSpec attribute)

 	allow_dist (vermouth.processors.make_bonds.MakeBonds attribute)

 	allow_names (vermouth.processors.make_bonds.MakeBonds attribute)

 	allowed_ptms() (in module vermouth.processors.canonicalize_modifications)

 	alt (vermouth.truncating_formatter.FormatSpec attribute)

 	always_true() (in module vermouth.processors.apply_rubber_band)

 	analyze_symmetry() (vermouth.ismags.ISMAGS method)

 	angle() (in module vermouth.geometry)

 	
 	anisou() (vermouth.pdb.pdb.PDBParser static method)

 	annotate_dssp() (in module vermouth.dssp.dssp)

 	annotate_modifications() (in module vermouth.processors.annotate_mut_mod)

 	annotate_residues_from_sequence() (in module vermouth.dssp.dssp)

 	AnnotateDSSP (class in vermouth.dssp.dssp)

 	AnnotateMartiniSecondaryStructures (class in vermouth.dssp.dssp)

 	AnnotateMutMod (class in vermouth.processors.annotate_mut_mod)

 	AnnotateResidues (class in vermouth.dssp.dssp)

 	apply_block_mapping() (in module vermouth.processors.do_mapping)

 	apply_mod_mapping() (in module vermouth.processors.do_mapping)

 	apply_posres() (in module vermouth.processors.apply_posres)

 	apply_rubber_band() (in module vermouth.processors.apply_rubber_band)

 	ApplyPosres (class in vermouth.processors.apply_posres)

 	ApplyRubberBand (class in vermouth.processors.apply_rubber_band)

 	are_all_equal() (in module vermouth.utils)

 	are_connected() (in module vermouth.processors.apply_rubber_band)

 	are_different() (in module vermouth.utils)

 	atom() (vermouth.pdb.pdb.PDBParser method)

 	atom_attrs (vermouth.molecule.DeleteInteraction attribute)

 	atom_idxs (vermouth.gmx.itp_read.ITPDirector attribute)

 	atoms (vermouth.molecule.Block attribute)

 	(vermouth.molecule.DeleteInteraction attribute)

 	(vermouth.molecule.Interaction attribute)

 	(vermouth.molecule.Molecule attribute)

 	attach_mass() (in module vermouth.processors.attach_mass)

 	AttachMass (class in vermouth.processors.attach_mass)

 	attribute_keep (vermouth.processors.do_mapping.DoMapping attribute)

 	attribute_must (vermouth.processors.do_mapping.DoMapping attribute)

 	attribute_stash (vermouth.processors.do_mapping.DoMapping attribute)

 	attributes_match() (in module vermouth.molecule)

 	attrs_from_node() (in module vermouth.processors.do_mapping)

 	author() (vermouth.pdb.pdb.PDBParser static method)

B

 	
 	base_constant (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	BibTexDirector (class in vermouth.citation_parser)

 	BipolarFormatter (class in vermouth.log_helpers)

 	Block (class in vermouth.molecule)

 	block_from (vermouth.map_parser.Mapping attribute)

 	block_to (vermouth.map_parser.Mapping attribute)

 	blocks (vermouth.forcefield.ForceField attribute)

 	
 	blocks_from (vermouth.map_parser.MappingBuilder attribute)

 	blocks_to (vermouth.map_parser.MappingBuilder attribute)

 	bond_type (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	bond_type_variable (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	build_connectivity_matrix() (in module vermouth.processors.apply_rubber_band)

 	build_graph_mapping_collection() (in module vermouth.processors.do_mapping)

 	build_pair_matrix() (in module vermouth.processors.apply_rubber_band)

 	builder (vermouth.map_parser.MappingDirector attribute)

C

 	
 	CanonicalizeModifications (class in vermouth.processors.canonicalize_modifications)

 	categorical_cartesian_product() (in module vermouth.graph_utils)

 	categorical_maximum_common_subgraph() (in module vermouth.graph_utils)

 	categorical_modular_product() (in module vermouth.graph_utils)

 	caveat() (vermouth.pdb.pdb.PDBParser static method)

 	Choice (class in vermouth.molecule)

 	cispep() (vermouth.pdb.pdb.PDBParser static method)

 	citation_formatter() (in module vermouth.citation_parser)

 	citations (vermouth.molecule.Molecule attribute)

 	close() (vermouth.file_writer.DeferredFileWriter method)

 	colinear_pair() (in module vermouth.processors.locate_charge_dummies)

 	collect_residues() (in module vermouth.graph_utils)

 	combine_mappings() (in module vermouth.map_input)

 	comma (vermouth.truncating_formatter.FormatSpec attribute)

 	
 	COMMENT_CHAR (vermouth.ffinput.FFDirector attribute)

 	(vermouth.gmx.itp_read.ITPDirector attribute)

 	(vermouth.map_parser.MappingDirector attribute)

 	(vermouth.parser_utils.LineParser attribute)

 	compnd() (vermouth.pdb.pdb.PDBParser static method)

 	compute_decay() (in module vermouth.processors.apply_rubber_band)

 	compute_force_constants() (in module vermouth.processors.apply_rubber_band)

 	conect() (vermouth.pdb.pdb.PDBParser method)

 	convert_dssp_annotation_to_martini() (in module vermouth.dssp.dssp)

 	convert_dssp_to_martini() (in module vermouth.dssp.dssp)

 	copy() (vermouth.molecule.Molecule method)

 	(vermouth.system.System method)

 	CountingHandler (class in vermouth.log_helpers)

 	cover() (in module vermouth.processors.do_mapping)

 	cryst1() (vermouth.pdb.pdb.PDBParser static method)

D

 	
 	dbref() (vermouth.pdb.pdb.PDBParser static method)

 	dbref1() (vermouth.pdb.pdb.PDBParser static method)

 	dbref2() (vermouth.pdb.pdb.PDBParser static method)

 	decay_factor (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	decay_power (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	decimal (vermouth.truncating_formatter.FormatSpec attribute)

 	DeferredFileWriter (class in vermouth.file_writer)

 	delete_unknown (vermouth.processors.do_mapping.DoMapping attribute)

 	(vermouth.processors.repair_graph.RepairGraph attribute)

 	DeleteInteraction (class in vermouth.molecule)

 	dihedral() (in module vermouth.geometry)

 	dihedral_phase() (in module vermouth.geometry)

 	
 	dispatch() (vermouth.gmx.itp_read.ITPDirector method)

 	(vermouth.parser_utils.LineParser method)

 	(vermouth.parser_utils.SectionLineParser method)

 	(vermouth.pdb.pdb.PDBParser method)

 	distance_matrix() (in module vermouth.geometry)

 	do_average_bead() (in module vermouth.processors.average_beads)

 	do_conect() (vermouth.pdb.pdb.PDBParser method)

 	do_mapping() (in module vermouth.processors.do_mapping)

 	DoAverageBead (class in vermouth.processors.average_beads)

 	DoLinks (class in vermouth.processors.do_links)

 	domain_criterion (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	DoMapping (class in vermouth.processors.do_mapping)

 	DSSPError

E

 	
 	edge_equality (vermouth.ismags.ISMAGS attribute)

 	edge_matcher() (in module vermouth.processors.do_mapping)

 	edges_between() (vermouth.molecule.Molecule method)

 	end() (vermouth.pdb.pdb.PDBParser method)

 	
 	endmdl() (vermouth.pdb.pdb.PDBParser method)

 	exclude (vermouth.processors.pdb_reader.PDBInput attribute)

 	expdta() (vermouth.pdb.pdb.PDBParser static method)

 	extract_fields() (vermouth.citation_parser.BibTexDirector static method)

F

 	
 	features (vermouth.forcefield.ForceField attribute)

 	ff_from (vermouth.map_parser.Mapping attribute)

 	(vermouth.map_parser.MappingBuilder attribute)

 	ff_to (vermouth.map_parser.Mapping attribute)

 	(vermouth.map_parser.MappingBuilder attribute)

 	FFDirector (class in vermouth.ffinput)

 	fibonacci_sphere() (in module vermouth.processors.locate_charge_dummies)

 	filename (vermouth.processors.pdb_reader.PDBInput attribute)

 	fill (vermouth.truncating_formatter.FormatSpec attribute)

 	filter_minimal() (in module vermouth.selectors)

 	finalize() (vermouth.gmx.itp_read.ITPDirector method)

 	(vermouth.parser_utils.LineParser method)

 	(vermouth.parser_utils.SectionLineParser method)

 	(vermouth.pdb.pdb.PDBParser method)

 	finalize_section() (vermouth.ffinput.FFDirector method)

 	(vermouth.gmx.itp_read.ITPDirector method)

 	(vermouth.map_parser.MappingDirector method)

 	(vermouth.parser_utils.SectionLineParser method)

 	
 	find_anchor() (in module vermouth.processors.locate_charge_dummies)

 	find_atoms() (vermouth.molecule.Molecule method)

 	find_entries() (vermouth.citation_parser.BibTexDirector static method)

 	find_force_fields() (in module vermouth.forcefield)

 	find_isomorphisms() (vermouth.ismags.ISMAGS method)

 	find_ptm_atoms() (in module vermouth.processors.canonicalize_modifications)

 	first_alpha() (in module vermouth.utils)

 	fix_ptm() (in module vermouth.processors.canonicalize_modifications)

 	force_field (vermouth.molecule.Molecule attribute)

 	(vermouth.system.System attribute)

 	ForceField (class in vermouth.forcefield)

 	format_atom_string() (in module vermouth.utils)

 	format_field() (vermouth.truncating_formatter.TruncFormatter method)

 	format_spec_re (vermouth.truncating_formatter.TruncFormatter attribute)

 	FormatSpec (class in vermouth.truncating_formatter)

 	formul() (vermouth.pdb.pdb.PDBParser static method)

 	from_ff (vermouth.map_parser.MappingDirector attribute)

 	from_ff() (vermouth.map_parser.MappingBuilder method)

 	fudge (vermouth.processors.make_bonds.MakeBonds attribute)

G

 	
 	generate_all_self_mappings() (in module vermouth.map_input)

 	generate_self_mappings() (in module vermouth.map_input)

 	get_attrs() (in module vermouth.graph_utils)

 	get_context() (vermouth.ffinput.FFDirector method)

 	get_default() (in module vermouth.processors.repair_graph)

 	get_interaction() (vermouth.molecule.Molecule method)

 	get_logger() (in module vermouth.log_helpers)

 	get_mapping() (vermouth.map_parser.MappingBuilder method)

 	
 	get_mod_mappings() (in module vermouth.processors.do_mapping)

 	get_native_force_field() (in module vermouth.forcefield)

 	get_not_none() (in module vermouth.pdb.pdb)

 	GoVirtIncludes (class in vermouth.processors.go_vs_includes)

 	graph (vermouth.ismags.ISMAGS attribute)

 	GROInput (class in vermouth.processors.gro_reader)

 	guess_angles() (vermouth.molecule.Block method)

 	guess_dihedrals() (vermouth.molecule.Block method)

H

 	
 	handle() (vermouth.log_helpers.CountingHandler method)

 	has_context() (vermouth.ffinput.FFDirector method)

 	has_dihedral_around() (vermouth.molecule.Block method)

 	has_feature() (vermouth.forcefield.ForceField method)

 	has_improper_around() (vermouth.molecule.Block method)

 	
 	header() (vermouth.pdb.pdb.PDBParser static method)

 	helix() (vermouth.pdb.pdb.PDBParser static method)

 	het() (vermouth.pdb.pdb.PDBParser static method)

 	hetatm() (vermouth.pdb.pdb.PDBParser method)

 	hetnam() (vermouth.pdb.pdb.PDBParser static method)

 	hetsyn() (vermouth.pdb.pdb.PDBParser static method)

I

 	
 	identifiers (vermouth.map_parser.MappingDirector attribute)

 	identify_ptms() (in module vermouth.processors.canonicalize_modifications)

 	ignh (vermouth.processors.pdb_reader.PDBInput attribute)

 	ignore_warnings_and_count() (in module vermouth.log_helpers)

 	include_graph (vermouth.processors.repair_graph.RepairGraph attribute)

 	Interaction (class in vermouth.molecule)

 	interaction_match() (in module vermouth.molecule)

 	interactions (vermouth.molecule.Molecule attribute)

 	interactions_natoms (vermouth.ffinput.FFDirector attribute)

 	
 	intersect() (in module vermouth.ismags)

 	is_isomorphic() (vermouth.ismags.ISMAGS method)

 	is_pragma() (vermouth.gmx.itp_read.ITPDirector static method)

 	is_protein() (in module vermouth.selectors)

 	is_section_header() (vermouth.parser_utils.SectionLineParser static method)

 	ISMAGS (class in vermouth.ismags)

 	isomorphisms_iter() (vermouth.ismags.ISMAGS method)

 	iter_force_field_files() (in module vermouth.forcefield)

 	iter_residues() (vermouth.molecule.Molecule method)

 	ITPDirector (class in vermouth.gmx.itp_read)

J

 	
 	jrnl() (vermouth.pdb.pdb.PDBParser static method)

K

 	
 	keywds() (vermouth.pdb.pdb.PDBParser static method)

L

 	
 	largest_common_subgraph() (vermouth.ismags.ISMAGS method)

 	LineParser (class in vermouth.parser_utils)

 	Link (class in vermouth.molecule)

 	link() (vermouth.pdb.pdb.PDBParser static method)

 	LinkParameterEffector (class in vermouth.molecule)

 	LinkPredicate (class in vermouth.molecule)

 	
 	links (vermouth.forcefield.ForceField attribute)

 	locate_all_dummies() (in module vermouth.processors.locate_charge_dummies)

 	locate_dummy() (in module vermouth.processors.locate_charge_dummies)

 	LocateChargeDummies (class in vermouth.processors.locate_charge_dummies)

 	log() (vermouth.log_helpers.PassingLoggerAdapter method)

 	(vermouth.log_helpers.StyleAdapter method)

 	lower_bound (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

M

 	
 	macros (vermouth.map_parser.MappingDirector attribute)

 	(vermouth.parser_utils.SectionLineParser attribute)

 	make_bonds() (in module vermouth.processors.make_bonds)

 	make_edges_from_interaction_type() (vermouth.molecule.Molecule method)

 	make_edges_from_interactions() (vermouth.molecule.Molecule method)

 	make_mapping_object() (in module vermouth.map_input)

 	make_partitions() (in module vermouth.ismags)

 	make_reference() (in module vermouth.processors.repair_graph)

 	make_residue_graph() (in module vermouth.graph_utils)

 	make_same_region_criterion() (in module vermouth.processors.apply_rubber_band)

 	MakeBonds (class in vermouth.processors.make_bonds)

 	manager (logging.PassingLoggerAdapter.Logger attribute)

 	(vermouth.log_helpers.PassingLoggerAdapter attribute)

 	map() (vermouth.map_parser.Mapping method)

 	Mapping (class in vermouth.map_parser)

 	mapping (vermouth.map_parser.Mapping attribute)

 	(vermouth.map_parser.MappingBuilder attribute)

 	MappingBuilder (class in vermouth.map_parser)

 	MappingDirector (class in vermouth.map_parser)

 	MappingGraphMatcher (class in vermouth.graph_utils)

 	mappings (vermouth.processors.do_mapping.DoMapping attribute)

 	master() (vermouth.pdb.pdb.PDBParser static method)

 	match() (vermouth.molecule.Choice method)

 	(vermouth.molecule.LinkPredicate method)

 	(vermouth.molecule.NotDefinedOrNot method)

 	match_link() (in module vermouth.processors.do_links)

 	match_order() (in module vermouth.processors.do_links)

 	maxes() (in module vermouth.utils)

 	mdltyp() (vermouth.pdb.pdb.PDBParser static method)

 	
 	merge_chains() (in module vermouth.processors.merge_chains)

 	merge_molecule() (vermouth.molecule.Molecule method)

 	MergeAllMolecules (class in vermouth.processors.merge_all_molecules)

 	MergeChains (class in vermouth.processors.merge_chains)

 	MergeNucleicStrands (class in vermouth.processors.add_molecule_edges)

 	Message (class in vermouth.log_helpers)

 	meta (vermouth.molecule.DeleteInteraction attribute)

 	(vermouth.molecule.Interaction attribute)

 	(vermouth.molecule.Molecule attribute)

 	METH_DICT (vermouth.ffinput.FFDirector attribute)

 	(vermouth.gmx.itp_read.ITPDirector attribute)

 	(vermouth.map_parser.MappingDirector attribute)

 	(vermouth.parser_utils.SectionLineParser attribute)

 	minimum_force (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	model() (vermouth.pdb.pdb.PDBParser method)

 	modelidx (vermouth.pdb.pdb.PDBParser attribute)

 	(vermouth.processors.pdb_reader.PDBInput attribute)

 	Modification (class in vermouth.molecule)

 	modification_matches() (in module vermouth.processors.do_mapping)

 	modifications (vermouth.forcefield.ForceField attribute)

 	(vermouth.processors.annotate_mut_mod.AnnotateMutMod attribute)

 	modres() (vermouth.pdb.pdb.PDBParser static method)

 	Molecule (class in vermouth.molecule)

 	molecules (vermouth.pdb.pdb.PDBParser attribute)

 	(vermouth.system.System attribute)

 	mtrix1() (vermouth.pdb.pdb.PDBParser static method)

 	mtrix2() (vermouth.pdb.pdb.PDBParser static method)

 	mtrix3() (vermouth.pdb.pdb.PDBParser static method)

 	mutations (vermouth.processors.annotate_mut_mod.AnnotateMutMod attribute)

N

 	
 	n_keys_asked (vermouth.molecule.LinkParameterEffector attribute)

 	(vermouth.molecule.ParamAngle attribute)

 	(vermouth.molecule.ParamDihedral attribute)

 	(vermouth.molecule.ParamDihedralPhase attribute)

 	(vermouth.molecule.ParamDistance attribute)

 	name (vermouth.dssp.dssp.AnnotateDSSP attribute)

 	(vermouth.dssp.dssp.AnnotateMartiniSecondaryStructures attribute)

 	(vermouth.dssp.dssp.AnnotateResidues attribute)

 	(vermouth.forcefield.ForceField attribute)

 	(vermouth.molecule.Block attribute)

 	(vermouth.processors.merge_chains.MergeChains attribute)

 	NameMolType (class in vermouth.processors.name_moltype)

 	names (vermouth.map_parser.Mapping attribute)

 	(vermouth.map_parser.MappingBuilder attribute)

 	
 	NO_FETCH_BLOCK (vermouth.map_parser.MappingDirector attribute)

 	node_dict_factory (vermouth.molecule.Block attribute)

 	(vermouth.molecule.Link attribute)

 	(vermouth.molecule.Molecule attribute)

 	node_equality (vermouth.ismags.ISMAGS attribute)

 	node_matcher() (in module vermouth.processors.do_mapping)

 	node_should_exist() (in module vermouth.processors.do_mapping)

 	NotDefinedOrNot (class in vermouth.molecule)

 	nrexcl (vermouth.molecule.Molecule attribute)

 	num_particles (vermouth.system.System attribute)

 	number_of_counts_by() (vermouth.log_helpers.CountingHandler method)

 	nummdl() (vermouth.pdb.pdb.PDBParser static method)

O

 	
 	obslte() (vermouth.pdb.pdb.PDBParser static method)

 	open() (vermouth.file_writer.DeferredFileWriter method)

 	
 	origx1() (vermouth.pdb.pdb.PDBParser static method)

 	origx2() (vermouth.pdb.pdb.PDBParser static method)

 	origx3() (vermouth.pdb.pdb.PDBParser static method)

P

 	
 	pairs_under_threshold() (in module vermouth.edge_tuning)

 	ParamAngle (class in vermouth.molecule)

 	ParamDihedral (class in vermouth.molecule)

 	ParamDihedralPhase (class in vermouth.molecule)

 	ParamDistance (class in vermouth.molecule)

 	parameters (vermouth.molecule.DeleteInteraction attribute)

 	(vermouth.molecule.Interaction attribute)

 	parse() (vermouth.citation_parser.BibTexDirector method)

 	(vermouth.parser_utils.LineParser method)

 	(vermouth.pdb.pdb.PDBParser method)

 	parse_entry() (vermouth.citation_parser.BibTexDirector method)

 	parse_header() (vermouth.ffinput.FFDirector method)

 	(vermouth.gmx.itp_read.ITPDirector method)

 	(vermouth.parser_utils.SectionLineParser method)

 	parse_line() (vermouth.parser_utils.LineParser method)

 	parse_mapping_file() (in module vermouth.map_parser)

 	parse_pragma() (vermouth.gmx.itp_read.ITPDirector method)

 	parse_residue_spec() (in module vermouth.processors.annotate_mut_mod)

 	
 	parse_section() (vermouth.parser_utils.SectionLineParser method)

 	partition_graph() (in module vermouth.graph_utils)

 	partition_to_color() (in module vermouth.ismags)

 	PassingLoggerAdapter (class in vermouth.log_helpers)

 	PDBInput (class in vermouth.processors.pdb_reader)

 	PDBParser (class in vermouth.pdb.pdb)

 	pop_entry_type() (vermouth.citation_parser.BibTexDirector method)

 	pop_key() (vermouth.citation_parser.BibTexDirector static method)

 	precision (vermouth.truncating_formatter.FormatSpec attribute)

 	prepare_file() (vermouth.citation_parser.BibTexDirector static method)

 	process() (vermouth.log_helpers.PassingLoggerAdapter method)

 	(vermouth.log_helpers.TypeAdapter method)

 	Processor (class in vermouth.processors.processor)

 	proto_multi_templates() (in module vermouth.selectors)

 	proto_select_attribute_in() (in module vermouth.selectors)

 	prune_edges_between_selections() (in module vermouth.edge_tuning)

 	prune_edges_with_selectors() (in module vermouth.edge_tuning)

 	ptm_node_matcher() (in module vermouth.processors.canonicalize_modifications)

 	ptm_resname_match() (in module vermouth.processors.do_mapping)

Q

 	
 	Quoter (class in vermouth.processors.quote)

R

 	
 	rate_match() (in module vermouth.graph_utils)

 	read_backmapping_file() (in module vermouth.map_input)

 	read_bib() (in module vermouth.citation_parser)

 	read_dssp2() (in module vermouth.dssp.dssp)

 	read_ff() (in module vermouth.ffinput)

 	read_from() (vermouth.forcefield.ForceField method)

 	read_gro() (in module vermouth.gmx.gro)

 	read_itp() (in module vermouth.gmx.itp_read)

 	read_mapping_directory() (in module vermouth.map_input)

 	read_mapping_file() (in module vermouth.map_input)

 	read_pdb() (in module vermouth.pdb.pdb)

 	read_quote_file() (in module vermouth.processors.quote)

 	read_rtp() (in module vermouth.gmx.rtp)

 	reference_graphs (vermouth.forcefield.ForceField attribute)

 	references (vermouth.map_parser.Mapping attribute)

 	(vermouth.map_parser.MappingBuilder attribute)

 	remark() (vermouth.pdb.pdb.PDBParser static method)

 	remove_cystein_bridge_edges() (in module vermouth.processors.tune_cystein_bridges)

 	remove_interaction() (vermouth.molecule.Molecule method)

 	remove_matching_interaction() (vermouth.molecule.Molecule method)

 	remove_node() (vermouth.molecule.Molecule method)

 	remove_nodes_from() (vermouth.molecule.Molecule method)

 	RemoveCysteinBridgeEdges (class in vermouth.processors.tune_cystein_bridges)

 	rename_modified_residues() (in module vermouth.processors.rename_modified_residues)

 	renamed_residues (vermouth.forcefield.ForceField attribute)

 	RenameModifiedResidues (class in vermouth.processors.rename_modified_residues)

 	repair_graph() (in module vermouth.processors.repair_graph)

 	repair_residue() (in module vermouth.processors.repair_graph)

 	RepairGraph (class in vermouth.processors.repair_graph)

 	res_min_dist (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	res_min_dist_variable (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	reset() (vermouth.map_parser.MappingBuilder method)

 	RESIDUE_ATOM_SEP (vermouth.map_parser.MappingDirector attribute)

 	residue_matches() (in module vermouth.processors.annotate_mut_mod)

 	RESNAME_NUM_SEP (vermouth.map_parser.MappingDirector attribute)

 	
 	revdat() (vermouth.pdb.pdb.PDBParser static method)

 	reverse_mapping (vermouth.map_parser.Mapping attribute)

 	run_dssp() (in module vermouth.dssp.dssp)

 	run_molecule() (vermouth.dssp.dssp.AnnotateDSSP method)

 	(vermouth.dssp.dssp.AnnotateMartiniSecondaryStructures static method)

 	(vermouth.dssp.dssp.AnnotateResidues method)

 	(vermouth.processors.annotate_mut_mod.AnnotateMutMod method)

 	(vermouth.processors.apply_posres.ApplyPosres method)

 	(vermouth.processors.apply_rubber_band.ApplyRubberBand method)

 	(vermouth.processors.attach_mass.AttachMass method)

 	(vermouth.processors.average_beads.DoAverageBead method)

 	(vermouth.processors.canonicalize_modifications.CanonicalizeModifications method)

 	(vermouth.processors.do_links.DoLinks method)

 	(vermouth.processors.do_mapping.DoMapping method)

 	(vermouth.processors.go_vs_includes.GoVirtIncludes method)

 	(vermouth.processors.locate_charge_dummies.LocateChargeDummies method)

 	(vermouth.processors.merge_all_molecules.MergeAllMolecules static method)

 	(vermouth.processors.processor.Processor method)

 	(vermouth.processors.rename_modified_residues.RenameModifiedResidues method)

 	(vermouth.processors.repair_graph.RepairGraph method)

 	(vermouth.processors.set_molecule_meta.SetMoleculeMeta method)

 	(vermouth.processors.sort_molecule_atoms.SortMoleculeAtoms method)

 	(vermouth.processors.tune_cystein_bridges.RemoveCysteinBridgeEdges method)

 	run_system() (vermouth.dssp.dssp.AnnotateResidues method)

 	(vermouth.processors.add_molecule_edges.AddMoleculeEdgesAtDistance method)

 	(vermouth.processors.do_mapping.DoMapping method)

 	(vermouth.processors.gro_reader.GROInput method)

 	(vermouth.processors.make_bonds.MakeBonds method)

 	(vermouth.processors.merge_all_molecules.MergeAllMolecules method)

 	(vermouth.processors.merge_chains.MergeChains method)

 	(vermouth.processors.name_moltype.NameMolType method)

 	(vermouth.processors.pdb_reader.PDBInput method)

 	(vermouth.processors.processor.Processor method)

 	(vermouth.processors.quote.Quoter method)

 	(vermouth.processors.repair_graph.RepairGraph method)

S

 	
 	same_chain() (in module vermouth.processors.apply_rubber_band)

 	same_edges() (vermouth.molecule.Molecule method)

 	same_interactions() (vermouth.molecule.Molecule method)

 	same_nodes() (vermouth.molecule.Molecule method)

 	same_non_edges() (vermouth.molecule.Link method)

 	scale1() (vermouth.pdb.pdb.PDBParser static method)

 	scale2() (vermouth.pdb.pdb.PDBParser static method)

 	scale3() (vermouth.pdb.pdb.PDBParser static method)

 	section (vermouth.map_parser.MappingDirector attribute)

 	(vermouth.parser_utils.SectionLineParser attribute)

 	SECTION_ENDS (vermouth.map_parser.MappingDirector attribute)

 	section_parser() (vermouth.parser_utils.SectionParser static method)

 	SectionLineParser (class in vermouth.parser_utils)

 	SectionParser (class in vermouth.parser_utils)

 	select_all() (in module vermouth.selectors)

 	select_backbone() (in module vermouth.selectors)

 	select_nodes_multi() (in module vermouth.edge_tuning)

 	selector (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

 	selector_has_position() (in module vermouth.selectors)

 	self_distance_matrix() (in module vermouth.processors.apply_rubber_band)

 	semantic_feasibility() (vermouth.graph_utils.MappingGraphMatcher method)

 	
 	seqadv() (vermouth.pdb.pdb.PDBParser static method)

 	seqres() (vermouth.pdb.pdb.PDBParser static method)

 	sequence_from_residues() (in module vermouth.dssp.dssp)

 	SetMoleculeMeta (class in vermouth.processors.set_molecule_meta)

 	share_moltype_with() (vermouth.molecule.Molecule method)

 	sheet() (vermouth.pdb.pdb.PDBParser static method)

 	sign (vermouth.truncating_formatter.FormatSpec attribute)

 	Singleton (class in vermouth.file_writer)

 	site() (vermouth.pdb.pdb.PDBParser static method)

 	sort_interactions() (vermouth.molecule.Molecule static method)

 	SortMoleculeAtoms (class in vermouth.processors.sort_molecule_atoms)

 	source() (vermouth.pdb.pdb.PDBParser static method)

 	split_comments() (in module vermouth.parser_utils)

 	splt() (vermouth.pdb.pdb.PDBParser static method)

 	sprsde() (vermouth.pdb.pdb.PDBParser static method)

 	ssbond() (vermouth.pdb.pdb.PDBParser static method)

 	StyleAdapter (class in vermouth.log_helpers)

 	subgraph (vermouth.ismags.ISMAGS attribute)

 	subgraph() (vermouth.molecule.Molecule method)

 	subgraph_is_isomorphic() (vermouth.ismags.ISMAGS method)

 	subgraph_isomorphisms_iter() (vermouth.ismags.ISMAGS method)

 	System (class in vermouth.system)

T

 	
 	ter() (vermouth.pdb.pdb.PDBParser method)

 	title() (vermouth.pdb.pdb.PDBParser static method)

 	to_ff (vermouth.map_parser.MappingDirector attribute)

 	(vermouth.processors.do_mapping.DoMapping attribute)

 	
 	to_ff() (vermouth.map_parser.MappingBuilder method)

 	to_molecule() (vermouth.molecule.Block method)

 	TruncFormatter (class in vermouth.truncating_formatter)

 	type (vermouth.truncating_formatter.FormatSpec attribute)

 	TypeAdapter (class in vermouth.log_helpers)

U

 	
 	upper_bound (vermouth.processors.apply_rubber_band.ApplyRubberBand attribute)

V

 	
 	variables (vermouth.forcefield.ForceField attribute)

 	vermouth (module)

 	vermouth.citation_parser (module)

 	vermouth.dssp (module)

 	vermouth.dssp.dssp (module)

 	vermouth.edge_tuning (module)

 	vermouth.ffinput (module)

 	vermouth.file_writer (module)

 	vermouth.forcefield (module)

 	vermouth.geometry (module)

 	vermouth.gmx (module)

 	vermouth.gmx.gro (module)

 	vermouth.gmx.itp (module)

 	vermouth.gmx.itp_read (module)

 	vermouth.gmx.rtp (module)

 	vermouth.graph_utils (module)

 	vermouth.ismags (module)

 	vermouth.log_helpers (module)

 	vermouth.map_input (module)

 	vermouth.map_parser (module)

 	vermouth.molecule (module)

 	vermouth.parser_utils (module)

 	vermouth.pdb (module)

 	vermouth.pdb.pdb (module)

 	vermouth.processors (module)

 	vermouth.processors.add_molecule_edges (module)

 	
 	vermouth.processors.annotate_mut_mod (module)

 	vermouth.processors.apply_posres (module)

 	vermouth.processors.apply_rubber_band (module)

 	vermouth.processors.attach_mass (module)

 	vermouth.processors.average_beads (module)

 	vermouth.processors.canonicalize_modifications (module)

 	vermouth.processors.do_links (module)

 	vermouth.processors.do_mapping (module)

 	vermouth.processors.go_vs_includes (module)

 	vermouth.processors.gro_reader (module)

 	vermouth.processors.locate_charge_dummies (module)

 	vermouth.processors.make_bonds (module)

 	vermouth.processors.merge_all_molecules (module)

 	vermouth.processors.merge_chains (module)

 	vermouth.processors.name_moltype (module)

 	vermouth.processors.pdb_reader (module)

 	vermouth.processors.processor (module)

 	vermouth.processors.quote (module)

 	vermouth.processors.rename_modified_residues (module)

 	vermouth.processors.repair_graph (module)

 	vermouth.processors.set_molecule_meta (module)

 	vermouth.processors.sort_molecule_atoms (module)

 	vermouth.processors.tune_cystein_bridges (module)

 	vermouth.selectors (module)

 	vermouth.system (module)

 	vermouth.truncating_formatter (module)

 	vermouth.utils (module)

W

 	
 	width (vermouth.truncating_formatter.FormatSpec attribute)

 	write() (vermouth.file_writer.DeferredFileWriter method)

 	write_gro() (in module vermouth.gmx.gro)

 	
 	write_molecule_itp() (in module vermouth.gmx.itp)

 	write_pdb() (in module vermouth.pdb.pdb)

 	write_pdb_string() (in module vermouth.pdb.pdb)

Z

 	
 	zero_padding (vermouth.truncating_formatter.FormatSpec attribute)

 VerMoUTH 0.9

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to VerMoUTH’s documentation!

 		
 General Overview

 		
 Installation instructions

 		
 Quickstart

 		
 General layout

 		
 Citing

 		
 References

 		
 Martinize 2 workflow

 		
 Pipeline

 		
 1) Read input files

 		
 Reading PDB files

 		
 Make bonds

 		
 Annotate mutations and modifications

 		
 2) Repair the input graph

 		
 Repair graph

 		
 Identify modifications

 		
 Rebuild coordinates for missing atoms

 		
 3) Resolution transformation

 		
 4) Apply Links

 		
 5) Post processing

 		
 6) Write output

 		
 Technical background

 		
 Processor

 		
 Data

 		
 Molecule

 		
 Block

 		
 Link

 		
 Modification

 		
 Force Field

 		
 Mapping

 		
 Graph algorithms

 		
 Definitions

 		
 Isomorphism

 		
 File formats

 		
 .ff file format

 		
 .mapping file format

 		
 Tutorials

 		
 Atomistic protein in solution

 		
 Coarse-grained protein in solution

 		
 Transmembrane protein

 		
 PAMAM: a hyperbranched polymer

 		
 A glycosylated protein

 		
 Adding new residues and links

 		
 Adding new modifications

 		
 vermouth

 		
 vermouth package

 		
 Subpackages

 		
 Submodules

 		
 Module contents

_static/up.png

_static/up-pressed.png

