
VerMoUTH Documentation
Release 0.10.1.dev55

Peter C Kroon, Jonathan Barnoud, Tsjerk A Wassenaar, Siewert-Jan Marrink

Apr 23, 2024

CONTENTS:

1 General Overview 1
1.1 Installation instructions . 1
1.2 Quickstart . 1
1.3 General layout . 2
1.4 Citing . 2
1.5 References . 2

2 Martinize 2 workflow 3
2.1 Pipeline . 3
2.2 1) Read input files . 3
2.3 2) Repair the input graph . 5
2.4 3) Resolution transformation . 6
2.5 4) Apply Links . 6
2.6 5) Post processing . 7
2.7 6) Write output . 7

3 Technical background 9
3.1 Processor . 9
3.2 Data . 9
3.3 Graph algorithms . 11

4 File formats 15
4.1 Data structures and file formats . 15
4.2 Force field file (.ff) . 15
4.3 Mapping files (.map & .mapping) . 21

5 Tutorials 25
5.1 Adding new residues and links . 25
5.2 Adding new modifications . 30

6 vermouth 35
6.1 vermouth package . 35

7 Indices and tables 133

Bibliography 135

Python Module Index 137

Index 139

i

ii

CHAPTER

ONE

GENERAL OVERVIEW

VerMoUTH and martinize2 are tools for setting up starting structures for molecular dynamics (MD) simulations starting
from atomistic coordinates, with a special focus on polymeric systems (including proteins and DNA). Existing tools
that do this are generally limited to strictly linear polymers, while VerMoUTH and martinize2 make no assumptions
regarding polymer structure. VerMoUTH is a python library that can be used programmatically. Martinize2 is a
command line tool build on top of that.

VerMoUTH and martinize2 are also capable of dealing with structures where atom names are not provided, and to
some extent with incomplete structures where atoms are missing from the input structure due to e.g. experimental
limitations. There is also support for post-translational modifications.

VerMoUTH and martinize2 can be used to generate both atomistic and coarse-grained topologies and are the preferred
method of generating topologies for the [Martini3] force field.

1.1 Installation instructions

Vermouth and martinize2 are distributed through pypi and can be installed using pip.

pip install vermouth

The behavior of the pip command can vary depending on the specifics of your python installation. See the documen-
tation on installing a python package to learn more.

1.2 Quickstart

The CLI of martinize2 is very similar to that of [martinize1], and can often be used as a drop-in replacement. For
example:

martinize2 -f lysozyme.pdb -x cg_protein.pdb -o topol.top
-ff martini3001 -dssp -elastic

This will read an atomistic lysozyme.pdb and produce a [Martini3] compatible structure and topology at
cg_protein.pdb and topol.top respectively. It will use the program [DSSP] to determine the proteins secondary
structure (which influences the topology), and produce an elastic network. See martinize2 -h for more options!
Note that if martinize2 runs into problems where the produced topology might be invalid it will issue warnings. If
this is the case it won’t write any output files, but also see the -maxwarn flag.

1

https://packaging.python.org/tutorials/installing-packages/#installing-packages
https://packaging.python.org/tutorials/installing-packages/#installing-packages

VerMoUTH Documentation, Release 0.10.1.dev55

1.3 General layout

In VerMoUTH a force field is defined as a collection of Blocks, Links and Modifications. Each of these is a graph, where
nodes describe atoms (or coarse-grained beads) and edges describe bonds between these. Blocks describe idealized
residues/monomeric repeat units and their MD parameters and interactions. Links are molecular fragments that describe
MD parameters and interactions between residues/monomeric repeat units. Modifications are molecular fragments that
describe deviations from Blocks, such as post-translational modifications and protonation states. Mappings describe
how molecular fragments can be converted between force fields.

Finally, martinize2 is a pipeline that is built up from Processors, which are defined by VerMoUTH. Processors are
isolated steps which function on either the complete system, or single molecules.

Martinize2 identifies atoms mostly based on their connectivity. We read the bonds present in the input file (as CONECT
records), and besides that we guess bonds based on atom names (within residues) and on distances (between residues,
using the same criteria as [VMD]). This means that your input structure must be reasonable.

1.4 Citing

A publication for vermouth and martinize 2 is currently being written. For now, please cite the relevant chapter from
the thesis of Peter C Kroon:

Kroon, P.C. (2020). Martinize 2 – VerMoUTH. Aggregate, automate, assemble (pp. 16-53). ISBN: 978-94-034-2581-
8.

1.5 References

2 Chapter 1. General Overview

CHAPTER

TWO

MARTINIZE 2 WORKFLOW

2.1 Pipeline

Martinize 2 is the main command line interface entry point for vermouth. It effectively consists of 6 stages:

1) reading input files

2) repairing the input molecule

3) mapping the input molecule to the desired output force field and resolution

4) applying Links to generate inter-residue interactions

5) post-processing, such as building an elastic network

6) writing output files

We’ll describe each stage in more detail here. It is good to bear in mind however that in all stages the recogni-
tion/identification of atoms/particles is based on their connectivity in addition to any atom properties.

Throughout this document, when we refer to an ‘edge’ we mean a connection between two nodes in a graph. With
‘bonds’ we mean a chemical connection including the corresponding simulation parameters. Similarly, with ‘molecule’
we mean a connected graph consisting of atoms and edges. Note that this is not necessarily the same as a protein chain,
since these could be connected through e.g. a disulphide bridge.

If martinize2 at some point encounters a situation that might result in an incorrect topology it will issue a warning,
and refuse to write output files so that you are forced to examine the situation, but also see the -maxwarn CLI option.
The options -v and -vv can be used to print more debug output, while the options -write-graph, -write-repair
and -write-canon can be used to write out the system after Make bonds, Repair graph and Identify modifications,
respectively. All of these can help you track down what’s going wrong where.

2.2 1) Read input files

Martinize2 can currently read input structures from .gro and .pdb files. .pdb files are preferred however, since they
contain more information, such as chain identifiers, and TER and CONECT records.

3

VerMoUTH Documentation, Release 0.10.1.dev55

2.2.1 Reading PDB files

Reading PDB files is done by PDBInput. We take into account the following PDB records: MODEL and ENDMDL to
determine which model to parse; ATOM and HETATM; TER, which can be used to separate molecules; CONECT, which is
used to add edges; and END.

We issue a pdb-alternate warning if any atoms in the PDB file have an alternate conformation that is not ‘A’, since
those will always be ignored.

Relevant CLI options: -f; -model; -ignore; -ignh.

2.2.2 Make bonds

Since atom identification is governed by their connectivity we need to generate bonds in the input structure. Where
possible we get them from the input file such as PDB CONECT records. Beyond that, edges are added by MakeBonds.
By default edges will be added based on atom names and distances, but this behaviour can be changed via the CLI
option -bonds-from.

To add edges based on atom names the Block from the input force field is used as reference for every residue in the
input structure where possible. This is not possible when a residue contains multiple atoms with the same name, nor
when there is no Block corresponding to the residue1. Note that this will only ever create edges within residues.

Edges will be added based on distance when they are close enough together, except for a few exceptions (see below).
Atoms will be considered close enough based on their element (taken from either the PDB file directly, or deduced
from atom name2). The distance threshold is multiplied by -bonds-fudge to allow for conformations that are slightly
out-of-equilibrium. Edges will not be added from distances in two cases: 1) if edges could be added based on atom
names no edges will be added between atoms that are not bonded in the reference Block. 2) If the edge would connect
2 residues, and at least one of the atoms involved is a hydrogen atom. Edges added based on distance are logged as
debug output.

If your input structure is far from equilibrium and adding edges based on distance is likely to produce erroneous results,
make sure to provide CONECT records describing at least the edges between residues, and between atoms involved in
modifications, such as termini and PTMs.

We issue a general warning when it is requested to add edges based on atom names, but this cannot be done for
some reason. This commonly happens when your input structure is a homo multimer without TER record and identical
residue numbers and chain identifiers across the monomers. In this case martinize2 cannot distinguish the atom “N”,
residue ALA1, chain “A” from the atom “N”, residue ALA1, chain “A” in the next monomer. The easiest solution in
this case is to place strategic TER records in your PDB file.

Relevant CLI options: -bond-from; -bonds-fudge

2.2.3 Annotate mutations and modifications

As a last step martinize2 allows you to make some changes to your input structure from the CLI, for example to perform
point mutations, or to apply PTMs and termini. This is done in part by AnnotateMutMod , and completed by Repair
graph.

The -mutate option can be used to change the residue name of one or more residues. For example, you can specify
-mutate PHE42:ALA to mutate all residues with residue name “PHE” and residue number 42 to “ALA”. Or change
all “HSE” residues to “HIS”: -mutate HSE:HIS. Modifications can be specified in a similar way.

1 Based on residue name.
2 The method for deriving the element from an atom name is extremely simplistic: the first letter is used. This will go wrong for two-letter

elements such as ‘Fe’, ‘Cl’, and ‘Cu’. In those cases, make sure your PDB file specifies the correct element. See also: add_element_attr()

4 Chapter 2. Martinize 2 workflow

VerMoUTH Documentation, Release 0.10.1.dev55

The specifications nter and cter can be used to quickly refer to all N- and C-terminal residues respectively3. In
addition, the CLI options -nter and -cter can be used to change the N- and C-termini. By default martinize2 will try
to apply charged protein termini (‘N-ter’ and ‘C-ter’). If this is not what you want, for example because your molecule
is not a protein, be sure to provide the appropriate -nter and -cter options. You can specify the modification none
to specify that a residue should not have any modifications. Note that if you use this for the termini you may end up
with chemically invalid, uncapped, termini.

Relevant CLI options: -mutate, -modify, -nter, -cter, -nt

2.3 2) Repair the input graph

Depending on the origin of your input structure, there may be atoms missing, or atoms may have non-standard names.
In addition, some residues may include modifications such as PTMs.

2.3.1 Repair graph

The first step is to complete the graph so that it contains all atoms described by the reference Block, and so that all
atoms have the correct names. These blocks are taken from the input force field based on residue names (taking any
mutations and modifications into account). RepairGraph takes care of all this.

To identify atoms in a residue we consider the Maximum common induced subgraph between the residue and its refer-
ence since the residue can be both too small (atoms missing in the input) and too large (atoms from PTMs) at the same
time. Unfortunately, this is a very expensive operation which scales exponentially with the size of the residue. So if
you know beforehand that your structure contains (very) large PTMs, such as lipidations, consider specifying those as
separate residues.

The maximum common induced subgraph is found using ISMAGS, where nodes are considered equal if their elements
are equal. Beforehand, the atoms in the residue will be sorted such that the isomorphism where most atom names
correspond with the reference is found. This sorting also speeds up the calculation significantly, so if you’re working
with a system containing large residues consider correcting some of the atom names.

We issue an unknown-residue warning if no Block can be retrieved for a given residue name. In this case the entire
molecule will be removed from the system.

2.3.2 Identify modifications

Secondly, all modifications are identified. Repair graph also tags all atoms it did not recognise, and those are processed
by CanonicalizeModifications.

Modifications are identified by finding the solution where all tagged atoms are covered by the atoms of exactly one
Modification, where the modification must be an induced subgraph of the molecule. Every modification must contain
at least one “anchoring” atom, which is an atom that is also described by a Block. Unknown atoms are considered to be
equal if their element is equal; anchor atoms are considered equal if their atom name is equal. Because modifications
must be induced subgraphs of the input structure there can be no missing atoms!

After this step all atoms will have correct atom names, and any residues that include modifications will be labelled.
This information is later used during the resolution transformation

An unknown-input warning will be issued if a modification cannot be identified. In this case the atoms involved will
be removed from the system.

3 N- and C-termini are defined as residues with 1 neighbour and having a higher or lower residue number than the neighbour, respectively. Note
that this definition also includes termini for non-proteins, but it does not include zwitterionic amino acids! This also means that if your polymer has
a chain break you’ll end up with more termini than you would otherwise expect.

2.3. 2) Repair the input graph 5

VerMoUTH Documentation, Release 0.10.1.dev55

2.3.3 Rebuild coordinates for missing atoms

Currently martinize2 is not capable of rebuilding coordinates for missing atoms.

2.4 3) Resolution transformation

The resolution transformation is done by DoMapping. This processor will produce your molecules at the target res-
olution, based on the available mappings. These mappings are read from the .map and .mapping files available in
the library4. See also File formats. In essence these mappings describe how molecular fragments (nodes and edges)
correspond to a block in the target force field. We find all the ways these mappings can fit onto the input molecule, and
add the corresponding blocks and modifications to the resulting molecule.

For a molecular fragment to match the input molecule the atom and residue names need to match5. This is why we
first repair the input molecule so that you only need to consider the canonical atom names when adding mappings.
Mappings defined by .mapping files can also cross residue boundaries (where specified).

Edges and interactions within the blocks will come from the target force field. Edges between the blocks will be
generated based on the connectivity of the input molecule, i.e. if atoms A and B are connected in the input molecule,
the particles they map to in the output force field will also be connected. Interactions across separate blocks will be
added in the next step.

The processor will do some sanity checking on the resulting molecule, and issue an unmapped-atom warning if there
are atoms in the input molecule for which no mapping can be found. In addition, this warning will also be issued if
there are any non-hydrogen atoms that are not mapped to the output molecule. A more serious inconsistent-data
warning will be issued for the following cases:

• there are multiple modification mappings, which overlap

• there are multiple block mappings, which overlap

• there is an output particle that is constructed from multiple input atoms, and some “residue level” attributes (such
as residue name and number) are not consistent between the constructing atoms.

• there is an atom which maps to multiple particles in the output, but these particles are disconnected

• there is an interaction that is being set by multiple mappings

Relevant CLI options: -ff, -map-dir

2.5 4) Apply Links

Next interactions between residues are added by DoLinks. We do this based on the concept of Links, which are
molecular fragments that describe interactions, and which atoms they should apply to. Links are very powerful and
flexible tools, and we use them to generate all interactions that depend on the local structure of the polymer. For
example, all interactions that depend on the protein sequence or secondary structure are defined by Links.

Links can both add, change and remove interactions and nodes. Because of this, the order in which links are applied
matters for the final topology. We apply them in the order in which they are defined in the force field files. Therefore
it is important to define links in the order of most general to most specific. A link is applied in all the places where it
fits onto the molecule produced by the mapping step.

4 When -ff (target force field) and -from (original force field) are the same the mappings will be generated automatically.
5 This is only mostly true. All attributes except a few that are not always defined must match. Not all attributes (such as ‘mass’) are defined in all

cases, depending on the source of the mappings. Note that we also take into account that atom names might have changed due to modifications: we
use the atom name as it is defined by the Block.

6 Chapter 2. Martinize 2 workflow

VerMoUTH Documentation, Release 0.10.1.dev55

For a link to match all its node attributes must match, where the ‘order’ attribute is a special case. The order attributes
are translated to a difference in residue numbers, so that nodes ‘BB’ and ‘+BB’ must have a difference in residue number
of exactly 16. Due to the reliance on residue numbers this can cause complications for non-linear polymers. For those
cases order specifications such as ‘>’ (greater than) and ‘*’ (different from)7 might be useful.

2.6 5) Post processing

There can be any number of post processing steps. For example to add an elastic network, or to generate Go vir-
tual sites. We will not describe their function here in detail. Instead, see for example ApplyRubberBand and
VirtualSiteCreator.

Relevant CLI options: -elastic, -ef, -el, -eu, -ermd, -ea, -ep, -em, -eb, -eunit, -go, -go-eps, -go-moltype,
-go-low, -go-up, -go-res-dist

2.7 6) Write output

Finally, the topology and conformation are written to files (if no warnings were encountered along the way). Currently
martinize2 and VerMoUTH can only write Gromacs itp files. Martinize2 will write a separate itp file for every unique
molecule in the system.

Relevant CLI options: -x, -o, -sep, -merge

6 Also ‘-BB’ and ‘BB’, ‘+BB’ and ‘++BB’, etc.
7 Remember that links can overlap! The link BB *BB will be applied both forwards and backwards!

2.6. 5) Post processing 7

VerMoUTH Documentation, Release 0.10.1.dev55

8 Chapter 2. Martinize 2 workflow

CHAPTER

THREE

TECHNICAL BACKGROUND

Here we will provide some additional technical background about the chosen data structures and graph algorithms.

3.1 Processor

Processors are relatively simple. They form the fundamental steps of the martinize2 pipeline. Processors are called
via their run_system()method. The default implementation of this method iterates over the molecules in the system,
and runs the run_molecule() method on them. This means that implementations of Processors must implement
either a run_system method, or a run_molecule method. If the processor can be run on independent molecules the
run_molecule method is preferred; run_system should be used only for cases where the problem at hand cannot be
separated in tasks-per-molecule.

In their run_molecule method Processor implementations are free to either modify molecules or create new ones.
Either way, they must return a Molecule. The run_system will be called with a System , which will be modified in
place.

3.2 Data

VerMoUTH knows several data structures, most of which describe atoms (or CG beads) and connections between
those. As such, these are modelled as mathematical graphs, where the nodes describe the particles, and edges the
bonds between these. In addition, these data structures describe the MD parameters and interactions, such as bonds,
atom types, angles, etc.

3.2.1 Molecule

A Molecule is a Graph where nodes are atoms/beads, and edges are the connections between theses (i.e. bonds1)
Generally, molecules are a single connected components2. Interactions are accessible through the interactions
attribute. Non-bonded parameters are not fully defined: nodes have an ‘atype’ attribute describing the particle type to
be used in an MD simulation, but we don’t store the associated e.g. Lennard-Jones parameters.

Molecules define a few notable convenience methods:

• merge_molecule(): Add all atoms and interactions from a molecule to this one. Note that this can also be
used to add a vermouth.molecule.Block to a molecule! This way you can incrementally build polymers
from monomers. This method will always produce a disconnected graph, so be sure to add the appropriate edges
afterwards.

1 But note that not every edge has to correspond to a bond and vice versa.
2 I.e. there is a path from any node to any other node in the molecule.

9

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph

VerMoUTH Documentation, Release 0.10.1.dev55

• make_edges_from_interactions(): To generate edges from bond, angle, dihedral, cmap and constraint in-
teractions. This is the only way interactions and their parameters are interpreted in vermouth.

3.2.2 Block

A Block can be seen as a canonical residue containing all atoms and interactions, and where all atom names are correct.
A block should be a single connected component, and atom names within a block are assumed to be unique.

Blocks can be defined through Gromacs’ .itp and .rtp file formats.

Blocks define a few notable convenience methods:

• guess_angles(): Generate all possible angles based on the edges.

• guess_dihedrals(): Generate all possible dihedral angles based on the edges.

• to_molecule(): Create a new Molecule based on this block.

3.2.3 Link

A Link is used to describe interactions between residues. As such, it consists of nodes and edges describing the
molecular fragment it should apply to, as well as the associated changes in MD parameters. For example, a link can
describe the addition, change or removal of specific interactions or node attributes. They can also be used to remove
nodes. Although it is possible to generate all MD parameters and interactions using Links, rather than taking them from
constituent blocks, this is not the preferred method. The approach where links only affect the parameters where they
depend on the local structure makes it easier to reason about how the final topology is constructed, and the performance
is better.

Besides nodes, edges, and interactions, links also describe non-edges, patterns and removed interactions. Non-edges
and patterns are used when matching the link to a molecule. Where there is a non-edge in the link there cannot be an
edge in the molecule, and the atoms involved do not need to be present in the molecule. Patterns provide a concise way
where either one of multiple conditions must be met. For example two neighbouring ‘BB’ beads, where one must have
a helical secondary structure, and the other should be a coil.

Links can be defined through .ff files. See also: Apply Links.

3.2.4 Modification

A Modification describes how a residue deviates from its associated Block , such as non-standard protonation states
and termini. Modifications differentiate between atoms/particles that should already be described by the block and
atoms that are only described by the modification.

A modification can add or remove nodes, change node attributes, and add, change, or remove interactions; much like a
Link. Note that a modification must always add at least one node. Otherwise there will be no unidentified nodes to be
picked up by the processor.

Modifications can be defined through .ff files. See also: Identify modifications.

10 Chapter 3. Technical background

VerMoUTH Documentation, Release 0.10.1.dev55

3.2.5 Force Field

A force field is a collection of Blocks, Links and Modifications. Force fields are identified by their name, which
should be unique. Within a force field blocks and modifications should also have unique names.

Note that this is only a subset of a force field in the MD sense: a VerMoUTH force field does not include e.g.
non-bonded parameters (only the particle types are included), or functional forms.

3.2.6 Mapping

A Mapping describes how molecular fragments can be transformed from one force field to another.

Mappings can be provided through [backward] style .map files, or the more powerful (but verbose) .mapping format.
See also: Resolution transformation.

3.3 Graph algorithms

Vermouth describes molecules and molecular fragments as graphs where atoms are nodes and connections between
them (e.g. bonds) are edges. This allows us to use the connectivity to identify which atom is which, meaning we are
no longer dependent on atom names.

3.3.1 Definitions

Graph

A graph 𝐺 = (𝑉,𝐸) is a collection of nodes (𝑉) connected by edges (𝐸): 𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸. In undirected graphs
𝑒𝑖𝑗 = 𝑒𝑗𝑖. Unless we specify otherwise all graphs used in vermouth are undirected. The size of a graph is equal to the
number of nodes: |𝐺| = |𝑉 |.

Subgraph

Graph 𝐻 = (𝑊,𝐹) is a subgraph of graph 𝐺 = (𝑉,𝐸) if:

|𝐻| < |𝐺|
𝑊 ⊂ 𝑉

𝑒𝑖𝑗 ∈ 𝐹 ∀𝑒𝑖𝑗 ∈ 𝐸

𝑒𝑖𝑗 /∈ 𝐹 ∀𝑒𝑖𝑗 /∈ 𝐸

This means that all nodes in 𝐻 are in 𝐺, and that nodes are connected in 𝐻 if and only if they are connected in 𝐺.

Graph isomorphism

A graph isomorphism 𝑚 between graphs 𝐻 = (𝑊,𝐹) and 𝐺 = (𝑉,𝐸) is a bijective mapping 𝑚 : 𝑉 ↦→ 𝑊 such that
the following conditions hold:

|𝐻| = |𝐺|
𝑚(𝑣) ≃ 𝑣

∀𝑣 ∈ 𝑉

(𝑚(𝑣𝑖),𝑚(𝑣𝑗)) ≃ (𝑣𝑖, 𝑣𝑗)

: (𝑚(𝑣𝑖),𝑚(𝑣𝑗)) ∈ 𝐹 ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐸

3.3. Graph algorithms 11

VerMoUTH Documentation, Release 0.10.1.dev55

This means that every node in 𝐺 maps to exactly one node in 𝐻 such that all connected nodes in 𝐺 are connected in
𝐻 . Note that labels/attributes on nodes and edges (such as element or atom name) can affect the equivalence criteria.

Subgraph isomorphism

A subgraph isomorphism is a Graph isomorphism, but without the constraint that |𝐻| = |𝐺|. Instead, |𝐻| ≤ |𝐺| if 𝐻
is subgraph isomorphic to 𝐺.

Induced subgraph isomorphism

As Subgraph isomorphism with the added constraint that equivalent nodes not connected in 𝐺 are not connected in 𝐻:

(𝑚(𝑣𝑖),𝑚(𝑣𝑗)) /∈ 𝐹 ∀(𝑣𝑖, 𝑣𝑗) /∈ 𝐸

We denote 𝐻 being induced subgraph isomorphic to 𝐺 as 𝐻 ≾ 𝐺.

It is important to note that a path graph is not subgraph isomorphic to the corresponding cycle graph of the same size.
For example, n-propane is not subgraph isomorphic to cyclopropane!

Maximum common induced subgraph

The maximum common induced subgraph between 𝐺 and 𝐻 is the largest graph 𝐽 such that 𝐽 ≾ 𝐺 and 𝐽 ≾ 𝐻 .
Commonly the answer is given as a general mapping between 𝐺 and 𝐻 .

3.3.2 Isomorphism

Vermouth and martinize2 identify atoms by connectivity, generally combined with a constraint on element or atom
name. We do this using either a Maximum common induced subgraph (during the Repair graph step) or a Induced
subgraph isomorphism (the other steps). In all these cases we effectively find how nodes in the molecule we’re working
on match with nodes in our reference graphs, such as blocks.

During the Repair graph step there are two, related, complications: 1) we need a “best” overlay, where as many atom
names match as possible; and 2) There can be very many (equivalent) possible overlays/isomorphisms. Let’s address
the second concern first. As example we’ll look at the automorphisms (= self-isomorphism, i.e. how does a graph fit
on itself) of propane (CH3-CH2-CH3).

There are 2 isomorphisms for the carbons: 𝐶𝛼 −𝐶𝛽 −𝐶𝛾 ↦→ 𝐶𝛼 −𝐶𝛽 −𝐶𝛾 and 𝐶𝛼 −𝐶𝛽 −𝐶𝛾 ↦→ 𝐶𝛾 −𝐶𝛽 −𝐶𝛼.
Similarly, there are 2 isomorphisms for the central methylene group: 𝐻1 − 𝐶𝛽 − 𝐻2 ↦→ 𝐻1 − 𝐶𝛽 − 𝐻2 and 𝐻1 −
𝐶𝛽 −𝐻2 ↦→ 𝐻2 − 𝐶𝛽 −𝐻1. Each terminal methyl group however, has 6 unique isomorphisms!

𝐻1𝐻2𝐻3 ↦→ (𝐻1𝐻2𝐻3, 𝐻1𝐻3𝐻2, 𝐻2𝐻1𝐻3, 𝐻3𝐻1𝐻2, 𝐻2𝐻3𝐻1, 𝐻3𝐻2𝐻1)

This means that in total, propane, a molecule consisting of 11 atoms, has 2(𝑐𝑎𝑟𝑏𝑜𝑛𝑠)×2(𝑚𝑒𝑡ℎ𝑦𝑙𝑒𝑛𝑒)×6(𝑚𝑒𝑡ℎ𝑦𝑙)×
6(𝑚𝑒𝑡ℎ𝑦𝑙) = 144 automorphisms! Now imagine how this scales for a lipid. Clearly this spirals out of control very
quickly, and it is generally unfeasible to generate all possible isomorphisms1.

Luckily for us however, we’re not interested in finding all these isomorphisms, since we can consider most of these to
be equivalent. For our use case it doesn’t matter whether 𝐻1 maps to 𝐻1 or 𝐻2 so long as 𝐻1 and 𝐻2 are equivalent.
There is one catch however: we need to find the isomorphism where most atom names match. We can achieve this
by preferentially using nodes with a lower index2 when given a choice between symmetry equivalent nodes. The

1 This problem gets even worse when trying to find the Maximum common induced subgraph.
2 In other words, we impose an ordering on the nodes in the graph. We do this by ordering the nodes based on whether there is a node with a

corresponding atom name in the reference and subsequently sorting by atom name.

12 Chapter 3. Technical background

VerMoUTH Documentation, Release 0.10.1.dev55

[ISMAGS] algorithm does exactly this: it calculates symmetry unique isomorphisms preferentially using nodes with a
smaller index.

Note that this problem only comes up when your graphs are (very) symmetric. In all other steps we constrain the
isomorphism such that nodes are only considered equal if their atom names match. Since atom names are generally
unique, this means that this problem is sidestepped completely. The only place where we cannot do this is during the
Repair graph step, since at that point we cannot assume that the atoms names in our molecule are correct.

3.3. Graph algorithms 13

VerMoUTH Documentation, Release 0.10.1.dev55

14 Chapter 3. Technical background

CHAPTER

FOUR

FILE FORMATS

Vermouth has two main types of data files:

• Force fields describe blocks, links and modifications to generate topologies.

• Mappings describe the transformations required for going from one description (force field) to another or vice
versa.

The two types of data are contained in data/force_fields and data/mappings, respectively. The force_fields directory
has a subdirectory for each force field that is available in vermouth and martinize2. The mappings directory has no
mandatory organization; any mapping applies to two force fields, which are specified in the mapping file. For conve-
nience, the mappings may be organized in subfolders. In particular, mappings from and to the canonical description,
which is based on the charmm36 force field, are typically placed in a subdirectory with the name of the other force field
(e.g., martini30).

4.1 Data structures and file formats

Please note that the file formats described here may undergo changes in the future. Features that are in the code, but
are not described here should not be considered stable and will likely be deprecated in the future.

For its description of the force fields, topologies and mappings, Vermouth uses a file format based on the one used
by Gromacs, consisting of named sections and subsections referred to as directives, each indicated with tag between
square brackets. Directives are divided into top-level and sub-level sections.

4.2 Force field file (.ff)

The top-level directives for the force field and the topologies are macros, variables, citations, moleculetypes, links, and
modifications.

4.2.1 Allowed major directives

The format recognizes the following directives:

• [macros]

– optional

– The macros section has no further subsections and lists substitution patterns to be applied throughout
the file being read.

– Macro values are substituted using the name with a preceding $. This is similar to the use of variables
in shell scripting and makes it easy to write generalizations and to use and change default values.

15

VerMoUTH Documentation, Release 0.10.1.dev55

– The following example specifies that the protein default backbone bead type is P2. It can be referred
to in the following sections of the file as $prot_default_bb_type .. code-block:

[macros]
prot_default_bb_type P2

• [variables]

– optional

– The variables section has no further subsections and lists a number of variable stored as key value
pairs in the force field object <data: force field>. This allows retrieving the parameters using
force_field.variables[key] = value.

– Variables are used to control force field wide parameters that are tied to a specific force field version.

– For example, the text below specifies that the bond type of the elastic networkx should be 1 for the
force field. .. code-block:

[variables]
elastic_network_bond_type 1

• [citations]

– optional

– The citations section lists the citations to be used for the force field. Citations are named and refer to an
entry in the bibtex file citations.bib in the force field directory.

– Note that martinize2 automatically adds some citations via processors. Thus it expects them to be present
in the citations file.

– Citations can also be specified for moleculetypes, links, and modifications, in a citation subsection.

– An example of this is: .. code-block:

[citations]
Martini3

– If you want to add a citation to a specific molecule, the citation directive can be added as subsection to the
moleculetype directive: .. code-block:

[moleculetype]
ALA 3
[citations]
mol_specific_citation

• [moleculetype]

– optional

– The moleculetype describes a block, i.e., a topological building block, comprising of particles (atoms)
with their properties and interactions. This can be a separate molecule or a part of a larger molecule,
typically a monomeric unit in a polymer. The moleculetype has a name and the number of bonds to use
for exclusions as its first content line. This is followed by one or more subsections. These subsections
are listed below.

– This directive must be followed by a line specifying the residue or molecule name as well as the number
of bonded partners excluded when computing the non-bonded interactions.

– An example of this is: .. code-block:

16 Chapter 4. File formats

VerMoUTH Documentation, Release 0.10.1.dev55

[moleculetype]
ALA 1

• [links]

– optional

– To generate a topology for a polymer or any molecule constructed from joining parts, Vermouth con-
nects moleculetypes using links. A link describes how blocks are to be joined, what changes are
effected in the atom lists and which interactions are added, removed, or altered. The changes in the
atom and interaction lists are specified using the corresponding subsections as under moleculetype.
However, there are also several link exclusive subsections as listed below.

– There may be any number of lines following the section tag. These lines can list selection statements
for filtering atoms in which to search for matching patterns. Each line specifies a property and the
corresponding value. The selection statements may include filters based on, e.g., the residue name and
the secondary structure type, which are used to determine the structural properties of protein backbone
in the Martini force field.

– An example of this feature is is shown below, where the link only applies to atoms with the resname
ALA and the secondary structure assignment coil. .. code-block:

[link]
resname "ALA"
cgsecstruc "C"

• [modification]

– optional

– Modifications can be used to edit molecules or parts thereof (blocks), e.g., for specifying protonation
states. Each modification starts with a line with the name. Thereafter may follow subsections as
under links. A modification may add, remove, or change atoms, interactions and/or edges, using the
corresponding subsections.

4.2.2 Allowed sub-directives: Moleculetype

• [atoms]

– mandatory

– Each line in the atoms section describes one particle, corresponding to a node in the molecular graph.
The description comprises the following fields:

∗ atom number

∗ atom type

∗ residue index

∗ residue name

∗ atom name

∗ charge group (optional)

∗ charge (optional)

∗ mass (optional)

– An example is shown below: .. code-block:

4.2. Force field file (.ff) 17

VerMoUTH Documentation, Release 0.10.1.dev55

[atoms]
;id type resnr residu atom cgnr charge mass
1 P5 1 GLY BB 1 0 47

• [edges]

– optional

– Edges will be added to the molecular graph when required based on the interactions directives, but
they can also be added explicitly by listing them under the edges subsections. An edge is specified by
the corresponding atom names. Note that these edges do not result in any interactions, but they rather
complete the molecular graph.

– An example is shown below: .. code-block:

[edges]
BB SC1

• [interaction_name]

– optional

– There are several options for subsections describing interactions between particles. Of these, bonds,
angles, dihedrals, cmap, and constraints will automatically add the corresponding edges to the molec-
ular graph, unless specified explicitly by setting an attribute ‘edge’ to false in a subsection #meta or
following a specific interaction.

– Each line in an interactions subsection specifies one interaction by listing the atoms involved by name,
followed by the interaction parameters. For all interactions, the parameters are read as is and written to
the output topology without interpreting and/or checking. Bond/constraint lengths, angles and dihedral
angles may be used for generating missing coordinates.

– A full list of interactions is given below, corresponding to the list of intramolecular interactions avail-
able in Gromacs, with a number specifying the number of particles involved in the interaction. Note
that improper dihedrals are listed as a separate interaction type, whereas in Gromacs these fall under
the dihedrals section.

– Known interactions:

∗ bonds(2)

∗ angles(3)

∗ dihedrals(4)

∗ impropers(4)

∗ constraints(2)

∗ pairs(2)

∗ pairs_nb(2)

∗ SETTLE(1)

∗ virtual_sites2(3)

∗ virtual_sites3(4)

∗ virtual_sites4(5)

∗ position_restraints(1)

∗ distance_restraints(2)

18 Chapter 4. File formats

VerMoUTH Documentation, Release 0.10.1.dev55

∗ dihedral_restraints(4)

∗ orientation_restraints(2)

∗ angle_restraints(4)

∗ angle_restraints_z(2)

∗ cmap(. . .)

– Any of the subsections can be given multiply times, in which case they are additive. Do note that in
the output topology specifying the same interaction several times (the same type and particles) will
overwrite any previous one, except when they are given different contexts (see below).

– In order to stack interactions with the same number of atoms but different parameters a special annota-
tion with a version number can be used. This is especially relevant for dihedrals, where multiple ones
may be specified. An example is shown below: .. code-block:

[dihedrals]
BB SC1 SC2 SC3 9 180 5 1 {"version": 1}
BB SC1 SC2 SC3 9 180 1 2 {"version": 2}
BB SC1 SC2 SC3 9 0 2 3 {"version": 3}

4.2.3 Allowed sub-directives: Link

• [atoms]

– optional

– The atoms directive is optional within links. It can be given to for example overwrite link attributes
or specify attributes of specific atoms. An attributes statement is a JSON style mapping of key/value
pairs, similar to those used in the #meta syntax (see below).

– Note that here the syntax is different from the moleculetype atoms directive. This directive requires
the particle name followed by a dict of attributes e.g BB {"resname": "ALA"}

– To overwrite atom attributes of existing atoms when a link is applied the user can provide a dict of
parameters within using the replace key as follows: .. code-block:

[atoms]
BB {"replace": {"charge": -1}}

• [interaction_name]

– optional

– A link may list any number of interactions to be added, if a link applies. The syntax is the same as for
the moleculetype sub- directive. However, when the listed particles are not within the same residue a
prefix has to be provided that specifies the order relative to a given residue. The following prefixes are
allowed:

* +, ++, +++ : first, second, third following residue
* -, --, --- : first, second, third previous residue
* >, >>, >>> : residue with larger resid but unspecified

difference between the residues
* <, <<, <<< : residue with smaller resid but unspecified

difference between the residues
* * : other residue

4.2. Force field file (.ff) 19

VerMoUTH Documentation, Release 0.10.1.dev55

Thus, +CA in amino acids refers to the C-alpha atom in the C-terminal connected neighbor, while >SG
in the construction of a disulphide bridge will refer to the SG atom in the partner cysteine.

These prefixes can also be used in the atoms and pattern subsections.

– For example, to specify a bond between the backbone bead of a given amino acid and the next one, we
write: .. code-block:

[link]
[bonds]
BB +BB 1 0.47 5000

• [patterns]

– optional

– If no pattern is given, the link pattern will consists of the particles and their connectivity inferred from
the interactions and atoms sub directive.

– To overwrite this default pattern one can list patterns of atoms to which the link applies. Each line in
the subsection describes a pattern. At least one of the patterns must apply for the link to match. A
pattern consists of atom identifiers. Each atom identifier consists of a name which may be preceded
by a prefix indicating the relative position in terms of residues.

• [features]

– optional

– The features subsection lists features to apply to the link itself. These can be used to control the
application of links during the building of topologies. For example, setting the feature ‘scfix’ will
cause the links to be applied only if the option -scfix is given to martinize2.

• [molmeta]

– optional

– The molmeta subsection lists metadata to be added/changed in the molecular graph. These metadata
can be used (and modified) by Vermouth’s processors and for provenance.

• [edges]

– optional

– Within the context of links, the edges specify that an edge should or shouldn’t be present, respectively,
for the link pattern to match.

– They should mostly be used in cases, where interactions are applied for which edges cannot be made
automatically.

• [non-edges]

– optional

– This directive specifies that an edge should be absent in order for the link to apply. Note that the first
particle must be present in the link and the second one must the partner with which to not form an
edge.

– This syntax is likely to be deprecated in the near future.

20 Chapter 4. File formats

VerMoUTH Documentation, Release 0.10.1.dev55

4.2.4 Allowed sub-directives: Modifications

• [atoms]

– mandatory

– The atoms subsection under a modification lists both anchors and atoms to be added to anchors or
changed. Entries consist of an atom name followed by an attributes statement. Atoms that are added
need to set the “PTM_atom” attribute to True and require a valid “element” attribute. Atoms for which
the “PTM_atom” attribute is absent (or False) must already be described by the relevant block with the
same atomname. The “replace” attribute may be set to a (nested) JSON dict, listing the atom attributes
to be changed and the new values corresponding to the modification. Such changes can also be applied
to atoms already present in the molecular graph, i.e., the ‘non-PTM atoms’.`

• [interaction_name]

– optional

– A modification may list any number of interactions to be added, if a modification applies. The syntax
is the same as for the link sub directive.

4.2.5 Special meta data

The ff file format employs some special syntaxes that can be used to affect the order in which interactions are displayed,
comment them, or group them.

So called #meta statements may be added at any line under an interactions directive. These directives always apply to
all entries if the remaining subsection. The metadata is given as a JSON style mapping of key/value pairs. Vermouth
currently employs the following possible metadata key/value pairs:

• {ifdef: value}, puts interactions within #ifdef value statements.

• {ifndef: value}, puts interactions within #ifndef value statements.

• {group: value}, will list all interactions after inserting a comment ; value

• {comment: value}, will put a comment ; value after each interaction

For example, the meta block below will group all interactions together under a comment ‘Side chain bonds’ and put
these within a #ifdef statement.

[link]
#meta {"group": "Side chain bonds", "ifdef": "FLEXIBLE"}

Metadata can also be added to a single line by adding an attribute statement as the last element.

4.3 Mapping files (.map & .mapping)

A mapping specifies the conversion from one force field description to another. If the transformation is from a higher
resolution force field to a lower resolution, e.g., from the canonical description to Martini, the process is typically called
‘forward mapping’.

The vermouth library currently utilizes two mapping formats. The .map format, which was originally developed for
the backward program, is used to describe how two blocks correspond to each other. The second format (.mapping)
is exclusively used in the context of modifications and is an extension to the first format.

4.3. Mapping files (.map & .mapping) 21

VerMoUTH Documentation, Release 0.10.1.dev55

4.3.1 File structure (.map)

The file is structured into sections, each beginning with a directive enclosed in square brackets ([]).

Allowed directives .map

The format recognizes the following directives:

• [molecule]

– This directive is immediately followed by a single line containing an alphanumeric string specifying
the residue name. This name denotes the residue under consideration. A block with this name must
be defined in both the [from] and [to] force fields.

– mandatory

• [from]

– The directive is followed by a single line containing an alphanumeric string corresponding to name of
the origin (i.e. higher resolution) force field.

– mandatory

• [to]

– The directive is followed by a single line containing an alphanumeric string corresponding to the name
of the target (i.e. higher resolution) force field.

– mandatory

• [martini]

– The directive is followed by any number of lines. Each line must contain space separated bead names.

– mandatory

• [atoms]

– This directive introduces a section that can span multiple lines. Each line within this section must
adhere to the following format:

∗ An integer specifying the atom number.

∗ An alphanumeric string corresponding to an atom name in the origin force field.

∗ Any number of bead names. These beads must have been previously listed under the [martini]
directive.

– All atoms described by the referenced block should be described.

– mandatory

• [chiral]

– Contains chirality specifications used for the original backwards program.

– ignored

• [trans]

– Contains geometry specifications used for the original backwards program.

– ignored

• [out]

– Contains geometry specifications used in the original backwards program.

22 Chapter 4. File formats

VerMoUTH Documentation, Release 0.10.1.dev55

– ignored

Example of .map file

[molecule]
ALA ALA
[martini]
BB SC1
[atoms]
1 N BB
2 HN BB
3 CA BB
5 CB SC1
9 C BB
10 O BB

4.3.2 File structure (.mapping)

The file is structured into sections, each beginning with a directive enclosed in square brackets ([]).

Allowed directives .mapping

• [modification]

– Marks the beginning of a modification block. This directive does not require any following content.

– mandatory

• [from]

– Followed by the name of the origin force-field (e.g., amber).

– mandatory

• [to]

– Followed by the name of the target force-field (e.g., martini3001).

– mandatory

• [from blocks] and [to blocks]

– Each followed by the name of the modification in the respective force fields

– mandatory

• [from nodes]

– Lists all nodes that should be part of the mapping that are not yet described by [from block]

– optional

• [from edges]

– Contains all edges that are part of the mapped fragment that are not described by [from block]. In
particular, all edges concerning nodes in [from nodes] must be listed here.

– optional

• [mapping]

4.3. Mapping files (.map & .mapping) 23

VerMoUTH Documentation, Release 0.10.1.dev55

– Contains pairs of atom names and bead names, describing the actual mapping between the high-
resolution and coarse-grained representations of the modification.

Example file of .mapping file

Below is an example of a .mapping file:

[modification]
[from]
amber
[to]
martini3001

[from blocks]
C-ter
[to blocks]
C-ter

[from nodes]
N
HN

[from edges]
HN N
N CA

[mapping]
CA BB
C BB
O BB
OXT BB

24 Chapter 4. File formats

CHAPTER

FIVE

TUTORIALS

You can find some examples on how to use martinize 2 in the martinize-examples repository: https://github.com/
marrink-lab/martinize-examples

5.1 Adding new residues and links

Occasionally you may need a topology containing a residue that is not yet described by the force fields that ship with
vermouth. In this case you will need to create the required data files yourself, and point martinize2 to them with the
-ff-dir and -map-dir flags. The key thing to remember is that you will need to add/edit three files. You need to describe
your new residue in the input force field (default charmm); the output force field, and the mapping between the two.

For this example we will add the required data files for a phosphorylated serine residue
(OC(=O)C(N)COP(=O)(=O)[O-]). Note that the parameters presented here are for demonstration purposes
only and not fit for actual science or simulations!

All input files for this tutorial can be found on github.

5.1.1 The input force field

The input force field is the force field best describing the structure and atom names in your input PDB file. By default
we use the charmm naming scheme. Since the input force field will only be used to repair your input structure, only
the atom names and edges are relevant.

We’ll start by creating a force fields folder we can use to create the tutorial files; and in that folder we need to create a
force field named charmm:

mkdir -p force_fields/charmm

Now we need to add the SEP Block to our charmm folder. Let’s put it in the file force_fields/charmm/sep.ff:

[moleculetype]
SEP 3

[atoms]
1 N 1 SEP N 1 0
2 H 1 SEP HN 2 0
3 C 1 SEP CA 3 0
4 H 1 SEP HA 4 0
5 C 1 SEP CB 5 0
6 H 1 SEP HB1 6 0
7 H 1 SEP HB2 7 0

(continues on next page)

25

https://github.com/marrink-lab/martinize-examples
https://github.com/marrink-lab/martinize-examples
https://github.com/marrink-lab/vermouth-martinize/tree/master/doc/source/tutorials/6_adding_residues_links/files

VerMoUTH Documentation, Release 0.10.1.dev55

(continued from previous page)

8 O 1 SEP OG 8 0
9 C 1 SEP C 9 0
10 O 1 SEP O 10 0
11 P 1 SEP P 11 0
12 O 1 SEP O1 12 0
13 O 1 SEP O2 13 0
14 O 1 SEP O3 14 -1

[bonds]
3 5
5 8
1 2
1 3
3 9
3 4
5 6
5 7
9 10
8 11
11 12
11 13
11 14

This file looks a lot like an ITP file, and if you have one of those you can simply drop it in and use it as is. In this case
we didn’t have an ITP file for SEP yet, so we had to make one. Since we only need atom names and bonds that’s all we
provide. Note that we added all hydrogens. Finally, if you prefer, you could also provide a RTP file instead of ITP.

5.1.2 The output force field

We also need to add the SEP Block to the output force field. Of course we’ll use Martini 3 for this. Let’s again start by
making a martini3001 folder:

mkdir -p force_fields/martini3001

Now to add the block to force_fields/martini3001/sep.ff:

;;; PHOSPHOSERINE
[moleculetype]
SEP 1

; THESE PARAMETERS ARE FOR DEMONSTRATION PURPOSES ONLY. DO NOT USE.
[atoms]
; id type resnr residue atom cgnr charge
1 P2 1 SEP BB 1 0
2 Q5n 1 SEP SC1 1 -1

[bonds]
BB SC1 1 0.33 5000

At this point we can run martinize2 -ff-dir force_fields -list-blocks to check whether our new SEP
blocks are picked up.

26 Chapter 5. Tutorials

VerMoUTH Documentation, Release 0.10.1.dev55

5.1.3 The mapping

Finally, we need to add the mapping describing how to get from charmm to martini3001. We need to make a folder:

mkdir mappings

In that folder, make a file mappings/sep.charmm36.map:

[molecule]
SEP

[from]
charmm

[to]
martini3001

[martini]
BB SC1

[mapping]
charmm

[atoms]
1 N BB
2 HN BB
3 CA BB
4 HA !BB
5 CB BB SC1
6 HB1 !SC1
7 HB2 !SC1
8 OG SC1
9 C BB
10 O BB
11 P SC1
12 O1 SC1
13 O2 SC1
14 O3 SC1

A few things are worth noting here. The HA, HB1, and HB2 atoms are mentioned here, but their mapping weight is 0,
due to the exclamation point. In addition, CB will contribute to BB and SC1 with equal weight.

Ok, this great! At this point we can run martinize2:

martinize2 -ff-dir force_fields -map-dir mappings -f ala-sep-ala.pdb -x AJA.pdb -o topol.
→˓top

And inspect the resulting molecule_0.itp to make sure our final topology is correct:

[moleculetype]
molecule_0 1

[atoms]
1 Q5 1 ALA BB 1 1

(continues on next page)

5.1. Adding new residues and links 27

VerMoUTH Documentation, Release 0.10.1.dev55

(continued from previous page)

2 TC3 1 ALA SC1 2 0.0
3 P2 2 SEP BB 3 0.0
4 Q5n 2 SEP SC1 3 -1.0
5 Q5 3 ALA BB 4 -1
6 TC3 3 ALA SC1 5 0.0

[bonds]
3 4 1 0.33 5000

#ifdef FLEXIBLE
; Side chain bonds
1 2 1 0.270 1000000
5 6 1 0.270 1000000
#endif

[constraints]
#ifndef FLEXIBLE
; Side chain bonds
1 2 1 0.270
5 6 1 0.270
#endif

We can see that we end up with the correct non-bonded parameters for our SEP residue, the C- and N-termini are
looking good, and we have the BB-SC1 bond we specified.

There is a problem though, there are no bonds (or constraints) connecting the SEP residue to its neighbouring ALA
residues!

5.1.4 The Links

In Vermouth and martinize2 we use links to describe interactions between residues. We need to these to the output
force field—in this case martini3001.

We can add the following to force_fields/martini3001/sep.ff:

[link]
[bonds]
BB {"resname": "SEP"} +BB {"resname": "ALA"} 1 0.35 4000

[link]
[bonds]
BB {"resname": "SEP"} -BB {"resname": "ALA"} 1 0.35 4000

[link]
[angles]
-BB {"resname": "ALA"} BB {"resname": "SEP"} +BB {"resname": "ALA"} 10 100 20

[link]
[angles]
-BB BB {"resname": "SEP"} SC1 2 100 25

Links are small molecular fragments. For example, the first one consists of 2 BB beads. The first one has to be part of
a SEP residue, and the second has to be part of an ALA residue. In addition, the + means the second BB has to have

28 Chapter 5. Tutorials

VerMoUTH Documentation, Release 0.10.1.dev55

a resid of exactly one higher than the first BB. In our example, this link will apply a backbone bond between the SEP
residue and ALA3.

The second link is almost identical, and applies a backbone bond between ALA1 and SEP. The two angles work in a
similar fashion.

This would result in the following topology:

[moleculetype]
molecule_0 1

[atoms]
1 Q5 1 ALA BB 1 1
2 TC3 1 ALA SC1 2 0.0
3 P2 2 SEP BB 3 0.0
4 Q5n 2 SEP SC1 3 -1.0
5 Q5 3 ALA BB 4 -1
6 TC3 3 ALA SC1 5 0.0

[bonds]
3 4 1 0.33 5000
3 5 1 0.35 4000
3 1 1 0.35 4000

#ifdef FLEXIBLE
; Side chain bonds
1 2 1 0.270 1000000
5 6 1 0.270 1000000
#endif

[constraints]
#ifndef FLEXIBLE
; Side chain bonds
1 2 1 0.270
5 6 1 0.270
#endif

[angles]
1 3 5 10 100 20
1 3 4 2 100 25

We now have bonds between the backbone beads, as well as the 2 angles we need. In this case, since we don’t intend
to use this residue for anything other than an ALA-SEP-ALA peptide, we can combine these links:

[link]
[atoms]
-BB {"resname": "ALA"}
BB {"resname": "SEP"}
SC1 {"resname": "SEP"}
+BB {"resname": "ALA"}
[bonds]
BB +BB 1 0.35 4000
BB -BB 1 0.35 4000
[angles]
-BB BB +BB 10 100 20

(continues on next page)

5.1. Adding new residues and links 29

VerMoUTH Documentation, Release 0.10.1.dev55

(continued from previous page)

-BB BB SC1 2 100 25

Which will produce the exact same topology. If you do need to add a residue that can be used in any kind of pro-
tein please take a look at how the Martini 3 force field is implemented, and deals with e.g. the secondary structure
dependence.

Links and Modifications

Something to keep in mind is that Links get applied after Modifications (at the time of writing). This can mean that
your Link overwrites, for example, terminal parameters. For this reason, you can filter nodes where Links get applied
much like you can limit Links by atom names or secondary structure. In particular, you can add a "modifications"
attribute to links nodes. This follows the following rules:

1. Links that don’t specify modifications simply match.

2. Links that specify empty modifications ("modifications": [] or null) only match atoms that have no
modifications.

3. Links that specify a list of modifications ("modifications": ["C-ter", "ASP-HD2"]) only match atoms
that carry that exact set of modifications.

4. Links that specify a string or Choice of modifications ("modifications": "C-ter" or "C-ter|COOH-ter")
only match atoms where all the atoms modifications match.

5.2 Adding new modifications

In Adding new residues and links we added a whole new Block in order to describe a phosphoserine residue. This had
the (dis)advantage that we had to redefine all the default serine interactions and parameters as well as the inter-residue
links. There must be a better way!

Fortunately there is. Rather than describing a whole new SEP Block and all that entails we can instead describe just the
way the phosphorylation modified the normal SER residue. This is exactly what modifications are for. As before, we
need to add the new modification in 3 places: input force field, output force field, and mapping between the two. Note
that the parameters presented here are for demonstration purposes only and not fit for actual science or simulations!

All input files for this tutorial can be found on github.

5.2.1 The input force field

During repair the regular SER atoms will be repaired, the missing hydrogen (HG) will be added (!), and the phosphate
atoms will be annotated as being “nonstandard”. During Identify modifications the Processor will try to identify these
tagged atoms by finding a minimal set of modifications that describe all relevant atoms. For a modification to apply
here it must be subgraph isomorphic to the input structure.

If we run martinize2 -f ala-sep-ala.pdb -o topol.top -x AJA.pdb we get, as expected, the warning that
not all modifications could be identified:

WARNING - unknown-input - Could not identify the modifications for residues ['SER3'],␣
→˓involving atoms ['21-O1', '22-O2', '23-O3', '24-P']

So let’s define the modification in force_fields/charmm/modification.ff:

30 Chapter 5. Tutorials

https://github.com/marrink-lab/vermouth-martinize/tree/master/doc/source/tutorials/7_adding_modifications/files

VerMoUTH Documentation, Release 0.10.1.dev55

; THESE PARAMETERS ARE FOR DEMONSTRATION PURPOSES ONLY. DO NOT USE.
[modification]
SER-phos
[atoms]
O1 {"element": "O", "PTM_atom": true}
O2 {"element": "O", "PTM_atom": true}
O3 {"element": "O", "PTM_atom": true}
P {"element": "P", "PTM_atom": true}
OG {"element": "O"}
HG {"element": "H", "replace": {"atomname": null}}
[edges]
OG P
P O1
P O2
P O3

As before, the input force field does not define any MD parameters or interactions. This modification contains nodes
and edges. The edges are not very interesting, and just define the connections between nodes. Nodes on the other
hand define 2 things: 1) the atom name as is should be (first column), and 2) any constraints the node must satisfy
during the subgraph isomorphism as a JSON formatted mapping. The constraints should define at least 2 properties:
the element, and PTM_atom. The element property is self explanatory, but the PTM_atom needs more explanation.

Modifications contain 2 types of nodes:

1. Nodes that are already described by the parent block (PTM_atom is false, this is the default). We call these nodes
“anchors”.

2. Nodes that are not yet described by the parent block (PTM_atom is true).

In addition, it’s worth noting that repair reconstructed the HG atom (see -write-repair) since it’s not in the input
PDB. We use the “replace” property to describe all node attributes that need to change because of this modification.
In this case we indicate that this atom should be removed again, by setting its atomname to “null”. You can use the
“replace” property to change any node property, including e.g. atom type and charge.

5.2.2 The output force field

We have to add a similar modification for the output force field in force_fields/martini3001/modification.ff:

[modification]
; THESE PARAMETERS ARE FOR DEMONSTRATION PURPOSES ONLY. DO NOT USE.
SER-PO4
[atoms]
BB {"PTM_atom": false}
SC1 {"PTM_atom": false, "resname": "SER", "replace": {"atype": "Q5n", "charge": -1}}
[bonds]
BB SC1 1 0.33 5000

Nothing new here compared to the modification for the input force field. Note that here we do define the simulation
parameters, and we define a bond.

5.2. Adding new modifications 31

VerMoUTH Documentation, Release 0.10.1.dev55

5.2.3 The mapping

Finally, we need to add the mapping describing how to get from charmm to martini3001 in mappings/SEP.mapping:

; THESE PARAMETERS ARE FOR DEMONSTRATION PURPOSES ONLY. DO NOT USE.
[modification]
[from]
charmm
[to]
martini3001
[from blocks]
SER-phos
[to blocks]
SER-PO4
[from nodes]
N
HN
CA
HA
C
O
CB
HB1
HB2
[from edges]
N HN
N CA
CA HA
CA C
C O
CA CB
CB HB1
CB HB2
CB OG
[mapping]
N BB
HN BB
CA BB
HA BB 0
C BB
O BB
CB BB
CB SC1
HB1 SC1 0
HB2 SC1 0
OG SC1
P SC1
O1 SC1
O2 SC1
O3 SC1

Firstly, notice that this is a different file format than the backwards format we used before. In this case we have to
define between which force fields we’re going to define a mapping (charmm and martini3001), and between which
modifications (or blocks) (SER-phos and SER-PO4). This mapping has to define how to map the phosphate moiety (at

32 Chapter 5. Tutorials

VerMoUTH Documentation, Release 0.10.1.dev55

least). This moiety will be mapped to the SC1 bead, so we will need to describe the complete mapping for that bead.
In addition this mapping affects the mapping of the BB bead (since CB will now also contribute in part to it).

The charmm modification already define some nodes (see above), but not all the nodes required to describe the complete
mapping for the BB and SC1 nodes, so these need to be described under from nodes and from edges. Finally, the actual
mapping section should be self explanatory.

Now if we run martinize2 -f ala-sep-ala.pdb -x AJA.pdb -o topol.top -ff-dir force_fields/
-map-dir mappings/ we see INFO - general - Applying modification mapping ('SER-phos',)

Now we need to check the produced itp file:

; THESE PARAMETERS ARE FOR DEMONSTRATION PURPOSES ONLY. DO NOT USE.
[atoms]
1 Q5 1 ALA BB 1 1
2 TC3 1 ALA SC1 2 0.0
3 P2 2 SER BB 3 0.0
4 Q5n 2 SER SC1 4 -1
5 Q5 3 ALA BB 5 -1
6 TC3 3 ALA SC1 6 0.0

[bonds]
3 4 1 0.33 5000

; Backbone bonds
1 3 1 0.350 4000
3 5 1 0.350 4000

#ifdef FLEXIBLE
; Side chain bonds
1 2 1 0.270 1000000
5 6 1 0.270 1000000
#endif

[constraints]
#ifndef FLEXIBLE
; Side chain bonds
1 2 1 0.270
5 6 1 0.270
#endif

[angles]
; BBB angles
1 3 5 10 127 20

; BBS angles regular martini
1 3 4 2 100 25
3 5 6 2 100 25

; First SBB regular martini
2 1 3 2 100 25

What we see here is that the atom type and bond we specified in the modification have been applied, and we can also no
longer see the BB-SC1 bond that comes with the normal serine residue (BB SC1 1 0.287 7500) is no longer present.
In addition, we find the usual backbone/protein interactions.

5.2. Adding new modifications 33

VerMoUTH Documentation, Release 0.10.1.dev55

34 Chapter 5. Tutorials

CHAPTER

SIX

VERMOUTH

6.1 vermouth package

6.1.1 Subpackages

vermouth.dssp package

Submodules

vermouth.dssp.dssp module

Assign protein secondary structures using DSSP.

class vermouth.dssp.dssp.AnnotateDSSP(executable=None, savedir=None)
Bases: Processor

name = 'AnnotateDSSP'

run_molecule(molecule)

class vermouth.dssp.dssp.AnnotateMartiniSecondaryStructures

Bases: Processor

name = 'AnnotateMartiniSecondaryStructures'

static run_molecule(molecule)

class vermouth.dssp.dssp.AnnotateResidues(attribute, sequence, molecule_selector=<function
select_all>)

Bases: Processor

Set an attribute of the nodes from a sequence with one element per residue.

Read a sequence with one element per residue and assign an attribute of each node based on that sequence, so
each node has the value corresponding to its residue. In most cases, the length of the sequence has to match the
total number of residues in the system. The sequence must be ordered in the same way as the residues in the
system. If all the molecules have the same number of residues, and if the length of the sequence corresponds to
the number of residue of one molecule, then the sequence is repeated to all molecules. If the sequence contains
only one element, then it is repeated to all the residues ofthe system.

Parameters

• attribute (str) – Name of the node attribute to populate.

35

https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

• sequence (collections.abc.Sequence) – Per-residue sequence.

• molecule_selector (collections.abc.Callable) – Function that takes an instance of
vermouth.molecule.Molecule as argument and returns True if the molecule should be
considered, else False.

name = 'AnnotateResidues'

run_molecule(molecule)
Run the processor on a single molecule.

Parameters
molecule (vermouth.molecule.Molecule)

Return type
vermouth.molecule.Molecule

run_system(system)

Run the processor on a system.

Parameters
system (vermouth.system.System)

Return type
vermouth.system.System

exception vermouth.dssp.dssp.DSSPError

Bases: Exception

Exception raised if DSSP fails.

vermouth.dssp.dssp.annotate_dssp(molecule, callable=None, attribute='secstruct')
Adds the DSSP assignation to the atoms of a molecule.

Runs DSSP on the molecule and adds the secondary structure assignation as an attribute of its atoms. The
attribute name in which the assignation is stored is controlled with the “attribute” argument.

Only proteins can be annotated. Non-protein molecules are returned unmodified, so are empty molecules, and
molecules for which no positions are set.

The atom names are assumed to be compatible with DSSP. Atoms with no known position are not passed to
DSSP which may lead to an error in DSSP.

Warning: The molecule is annotated in-place.

Parameters

• molecule (Molecule) – The molecule to annotate. Its atoms must have the attributes re-
quired to write a PDB file; other atom attributes, edges, or molecule attributes are not used.

• callable (Callable) – The function to call to generate DSSP secondary structure assign-
ments. See also: run_dssp(), run_mdtraj()

• attribute (str) – The name of the atom attribute in which to store the annotation.

See also:

run_mdtraj, run_dssp, read_dssp2

36 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.dssp.dssp.annotate_residues_from_sequence(molecule, attribute, sequence)
Sets the attribute attribute to a value from sequence for every node in molecule. Nodes in the n’th residue of
molecule are given the n’th value of sequence.

Parameters

• molecule (networkx.Graph) – The molecule to annotate. Is modified in-place.

• attribute (collections.abc.Hashable) – The attribute to set.

• sequence (collections.abc.Sequence) – The values assigned.

Raises
ValueError – If the length of sequence is different from the number of residues in molecule.

vermouth.dssp.dssp.convert_dssp_annotation_to_martini(molecule, from_attribute='secstruct',
to_attribute='cgsecstruct')

For every node in molecule, translate the from_attribute with convert_dssp_to_martini(), and assign it to
the attribute to_attribute.

Parameters

• molecule (networkx.Graph) – The molecule to process. Is modified in-place.

• from_attribute (collections.abc.Hashable) – The attribute to read.

• to_attribute (collections.abc.Hashable) – The attribute to set.

Raises
ValueError – If not all nodes have a from_attribute.

vermouth.dssp.dssp.convert_dssp_to_martini(sequence)
Convert a sequence of secondary structure to martini secondary sequence.

Martini treats some secondary structures with less resolution than dssp. For instance, the different types of helices
that dssp discriminates are seen the same by martini. Yet, different parts of the same helix are seen differently in
martini.

In the Martini force field, the B and E secondary structures from DSSP are both treated as extended regions. All
the DSSP helices are treated the same, but the different part of the helices (beginning, end, core of a short helix,
core of a long helix) are treated differently.

After the conversion, the secondary structures are: * :F: Collagenous Fiber * :E: Extended structure (sheet) *
:H: Helix structure * :1: Helix start (H-bond donor) * :2: Helix end (H-bond acceptor) * :3: Ambivalent helix
type (short helices) * :T: Turn * :S: Bend * :C: Coil

Parameters
sequence (str) – A sequence of secondary structures as read from dssp. One letter per residue.

Returns
A sequence of secondary structures usable for martini. One letter per residue.

Return type
str

vermouth.dssp.dssp.read_dssp2(lines)
Read the secondary structure from a DSSP output.

Only the first column of the “STRUCTURE” block is read. See the documentation of the DSSP format for more
details.

The secondary structures that can be read are:

6.1. vermouth package 37

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/exceptions.html#ValueError
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://swift.cmbi.ru.nl/gv/dssp/DSSP_3.html

VerMoUTH Documentation, Release 0.10.1.dev55

H
-helix

B
residue in isolated -bridge

E
extended strand, participates in ladder

G
3-helix (3-10 helix)

I
5 helix (-helix)

T
hydrogen bonded turn

S
bend

C
loop or irregular

The “C” code for loops and random coil is translated from the gap used in the DSSP file for an improved read-
ability.

Only the version 2 and 3 of DSSP is supported. If the format is not recognized as comming from that version of
DSSP, then a IOError is raised.

Parameters
lines – An iterable over the lines of the DSSP output. This can be e.g. a list of lines, or a file
handler. The new line character is ignored.

Returns
secstructs – The secondary structure assigned by DSSP as a list of one-letter secondary structure
code.

Return type
list[str]

Raises
IOError – When a line could not be parsed, or if the version of DSSP is not supported.

vermouth.dssp.dssp.run_dssp(system, executable='dssp', savedir=None, defer_writing=True)
Run DSSP on a system and return the assigned secondary structures.

Run DSSP using the path (or name in the research PATH) given by “executable”. Return the secondary structure
parsed from the output of the program.

In order to call DSSP, a PDB file is produced. Therefore, all the molecules in the system must contain the required
attributes for such a file to be generated. Also, the atom names are assumed to be compatible with the ‘charmm’
force field for DSSP to recognize them. However, the molecules do not require the edges to be defined.

DSSP is assumed to be in version 2 or 3. The secondary structure codes are described in read_dssp2().

Parameters

• system (System)

• executable (str) – Where to find the DSSP executable.

• savefile (None or str or pathlib.Path) – If set to a path, the output of DSSP is
written in this directory.

38 Chapter 6. vermouth

https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

VerMoUTH Documentation, Release 0.10.1.dev55

• defer_writing (bool) – Whether to use write() for writing data

Returns
The assigned secondary structures as a list of one-letter codes. The secondary structure sequences
of all the molecules are combined in a single list without delimitation.

Return type
list[str]

Raises

• DSSPError – DSSP failed to run.

• IOError – The output of DSSP could not be parsed.

See also:

read_dssp2
Parse a DSSP output.

vermouth.dssp.dssp.run_mdtraj(system)

Compute DSSP secondary structure assignments for the system by using mdtraj.compute_dssp.

During processing, a PDB file is produced. Therefore, all the molecules in the system must contain the required
attributes for such a file to be generated. Also, the atom names are assumed to be compatible with the ‘charmm’
force field for MDTraj to recognize them. However, the molecules do not require the edges to be defined.

Parameters
system (System) – The system to process

Returns
The assigned secondary structures as a list of one-letter codes. The secondary structure sequences
of all the molecules are combined in a single list without delimitation.

Return type
list[str]

vermouth.dssp.dssp.sequence_from_residues(molecule, attribute, default=None)
Generates a sequence of attribute, one per residue in molecule.

Parameters

• molecule (vermouth.molecule.Molecule) – The molecule to process.

• attribute (collections.abc.Hashable) – The attribute of interest.

• default (object) – Yielded if the first node of a residue has no attribute attribute.

Yields
object – The value of attribute for every residue in molecule.

6.1. vermouth package 39

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#object

VerMoUTH Documentation, Release 0.10.1.dev55

Module contents

vermouth.gmx package

Submodules

vermouth.gmx.gro module

Provides functionality to read and write GRO96 files.

vermouth.gmx.gro.read_gro(file_name, exclude=('SOL',), ignh=False)
Parse a gro file to create a molecule.

Parameters

• filename (str) – The file to read.

• exclude (collections.abc.Container[str]) – Atoms that have one of these residue
names will not be included.

• ignh (bool) – Whether hydrogen atoms should be ignored.

Returns
The parsed molecules. Will not contain edges.

Return type
vermouth.molecule.Molecule

vermouth.gmx.gro.write_gro(system, file_name, precision=7, title='Martinized!', box=(0, 0, 0),
defer_writing=True)

Write system to file_name, which will be a GRO96 file.

Parameters

• system (vermouth.system.System) – The system to write.

• file_name (str) – The file to write to.

• precision (int) – The desired precision for coordinates and (optionally) velocities.

• title (str) – Title for the gro file.

• box (tuple[float]) – Box length and optionally angles.

• defer_writing (bool) – Whether to use write() for writing data

vermouth.gmx.itp module

Handle the ITP file format from Gromacs.

vermouth.gmx.itp.write_molecule_itp(molecule, outfile, header=(), moltype=None,
post_section_lines=None, pre_section_lines=None)

Write a molecule in ITP format.

The molecule must have a nrexcl attribute. Each atom in the molecule must have at least the following keys:
atype, resid, resname, atomname, and charge_group. Atoms can also have a charge and a mass key.

If the moltype argument is not provided, then the molecule must have a “moltype” meta attribute.

Parameters

40 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Container
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

VerMoUTH Documentation, Release 0.10.1.dev55

• molecule (Molecule) – The molecule to write. See above for the minimal information the
molecule must contain.

• outfile (io.TextIOBase) – The file in which to write.

• header (collections.abc.Iterable[str]) – List of lines to write as comment at the
beginning of the file. The comment character and the new line should not be included as
they will be added in the function.

• moltype (str, optional) – The molecule type. If set to None (default), the molecule type
is read from the “moltype” key of molecule.meta.

• post_section_lines (dict[str, collections.abc.Iterable[str]],
optional) – List of lines to write at the end of some sections of the file. The argu-
ment is passed as a dict with the keys being the name of the sections, and the values
being the lists of lines. If the argument is set to None, the lines will be read from the
“post_section_lines” key of molecule.meta.

• pre_section_lines (dict[str, collections.abc.Iterable[str]], optional)
– List of lines to write at the beginning of some sections, just after the section header. The
argument is formatted in the same way as post_section_lines. If the argument is set to None,
the lines will be read from the “post_section_lines” key of molecule.meta.

Raises
ValueError – The molecule is missing required information.

vermouth.gmx.itp_read module

Read GROMACS .itp files.

class vermouth.gmx.itp_read.ITPDirector(force_field)
Bases: SectionLineParser

class for reading itp files.

COMMENT_CHAR = ';'

6.1. vermouth package 41

https://docs.python.org/3/library/io.html#io.TextIOBase
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

VerMoUTH Documentation, Release 0.10.1.dev55

METH_DICT = {('macros',): (<function SectionLineParser._macros>, {}),
('moleculetype',): (<function ITPDirector._block>, {}), ('moleculetype',
'angle_restraints'): (<function ITPDirector._interactions>, {}), ('moleculetype',
'angle_restraints_z'): (<function ITPDirector._interactions>, {}), ('moleculetype',
'angles'): (<function ITPDirector._interactions>, {}), ('moleculetype', 'atoms'):
(<function ITPDirector._block_atoms>, {}), ('moleculetype', 'bonds'): (<function
ITPDirector._interactions>, {}), ('moleculetype', 'constraints'): (<function
ITPDirector._interactions>, {}), ('moleculetype', 'dihedral_restraints'):
(<function ITPDirector._interactions>, {}), ('moleculetype', 'dihedrals'):
(<function ITPDirector._interactions>, {}), ('moleculetype', 'distance_restraints'):
(<function ITPDirector._interactions>, {}), ('moleculetype', 'exclusions'):
(<function ITPDirector._interactions>, {}), ('moleculetype', 'impropers'):
(<function ITPDirector._interactions>, {}), ('moleculetype',
'orientation_restraints'): (<function ITPDirector._interactions>, {}),
('moleculetype', 'pairs'): (<function ITPDirector._interactions>, {}),
('moleculetype', 'pairs_nb'): (<function ITPDirector._interactions>, {}),
('moleculetype', 'position_restraints'): (<function ITPDirector._interactions>,
{}), ('moleculetype', 'settles'): (<function ITPDirector._interactions>, {}),
('moleculetype', 'virtual_sites1'): (<function ITPDirector._interactions>, {}),
('moleculetype', 'virtual_sites2'): (<function ITPDirector._interactions>, {}),
('moleculetype', 'virtual_sites3'): (<function ITPDirector._interactions>, {}),
('moleculetype', 'virtual_sites4'): (<function ITPDirector._interactions>, {}),
('moleculetype', 'virtual_sitesn'): (<function ITPDirector._interactions>, {})}

A dict of all known parser methods, mapping section names to the function to be called and the associated
keyword arguments.

atom_idxs = {'angle_restraints': [slice(0, 4, None)], 'angle_restraints_z': [0,
1], 'angles': [0, 1, 2], 'bonds': [0, 1], 'constraints': [0, 1],
'dihedral_restraints': [slice(0, 4, None)], 'dihedrals': [0, 1, 2, 3],
'distance_restraints': [0, 1], 'exclusions': [slice(None, None, None)],
'orientation_restraints': [0, 1], 'pairs': [0, 1], 'pairs_nb': [0, 1],
'position_restraints': [0], 'settles': [0], 'virtual_sites1': [0],
'virtual_sites2': [0, 1, 2], 'virtual_sites3': [0, 1, 2, 3], 'virtual_sites4':
[slice(0, 5, None)], 'virtual_sitesn': [0, slice(2, None, None)]}

dispatch(line)
Looks at line to see what kind of line it is, and returns either parse_header() if line is a section header
or vermouth.parser_utils.SectionLineParser.parse_section() otherwise. Calls vermouth.
parser_utils.SectionLineParser.is_section_header() to see whether line is a section header
or not.

Parameters
line (str)

Returns
The method that should be used to parse line.

Return type
collections.abc.Callable

finalize(lineno=0)
Called at the end of the file and checks that all pragmas are closed before calling the parent method.

finalize_section(previous_section, ended_section)
Called once a section is finished. It appends the current_links list to the links and update the block dictionary
with current_block. Thereby it finishes reading a given section.

42 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable

VerMoUTH Documentation, Release 0.10.1.dev55

Parameters

• previous_section (list[str]) – The last parsed section.

• ended_section (list[str]) – The sections that have been ended.

static is_pragma(line)

Parameters
line (str) – A line of text.

Returns
True iff line is a def statement.

Return type
bool

parse_header(line, lineno=0)
Parses a section header with line number lineno. Sets vermouth.parser_utils.SectionLineParser.
section when applicable. Does not check whether line is a valid section header.

Parameters

• line (str)

• lineno (str)

Returns
The result of calling finalize_section(), which is called if a section ends.

Return type
object

Raises
KeyError – If the section header is unknown.

parse_pragma(line, lineno=0)
Parses the beginning and end of define sections with line number lineno. Sets attr current_meta when
applicable. Does check if ifdefs overlap.

Parameters

• line (str)

• lineno (str)

Returns
The result of calling finalize_section(), which is called if a section ends.

Return type
object

Raises
IOError – If the def sections are missformatted

vermouth.gmx.itp_read.read_itp(lines, force_field)
Parses lines of itp format and adds the molecule as a block to force_field.

Parameters

• lines (list) – list of lines of an itp file

• force_field (vermouth.forcefield.ForceField)

6.1. vermouth package 43

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/stdtypes.html#list

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.gmx.rtp module

Handle the RTP format from Gromacs.

vermouth.gmx.rtp.read_rtp(lines, force_field)
Read blocks and links from a Gromacs RTP file to populate a force field

Parameters

• lines (collections.abc.Iterator) – An iterator over the lines of a RTP file (e.g. a file
handle, or a list of string).

• force_field (vermouth.forcefield.ForceField) – The force field to populate in
place.

Raises
IOError – Something in the file could not be parsed.

vermouth.gmx.topology module

I/O of topology parameters that are not molecules.

class vermouth.gmx.topology.Atomtype(molecule, node, sigma, epsilon, meta)
Bases: tuple

Create new instance of Atomtype(molecule, node, sigma, epsilon, meta)

epsilon

Alias for field number 3

meta

Alias for field number 4

molecule

Alias for field number 0

node

Alias for field number 1

sigma

Alias for field number 2

class vermouth.gmx.topology.NonbondParam(atoms, sigma, epsilon, meta)
Bases: tuple

Create new instance of NonbondParam(atoms, sigma, epsilon, meta)

atoms

Alias for field number 0

epsilon

Alias for field number 2

meta

Alias for field number 3

sigma

Alias for field number 1

44 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.gmx.topology.sigma_epsilon_to_C6_C12(sigma, epsilon)
Convert the LJ potential from sigma epsilon form to C6 C12 form.

vermouth.gmx.topology.write_atomtypes(system, itp_path, C6C12=False)
Writes the [atomtypes] directive to file. All atomtypes are defined in system.gmx_topology_params. Masses and
further information are taken from the molecule directly.

vermouth.gmx.topology.write_gmx_topology(system, top_path, itp_paths={'atomtypes':
'extra_atomtypes.itp', 'nonbond_params':
'extra_nbparams.itp'}, C6C12=False, defines=(), header=())

Writes a Gromacs .top file for the specified system. Gromacs topology files are defined by directives for example
[atomtypes]. However, Gromacs supports writing parts of the topology to so called .itp files which can be
inculded into a toplevel topology file with the extension .top using #include statements. The topology writer will
generate such a toplevel topology file where the different directives are written to seperate .itp files and included
into the toplevel file.

Parameters

• system (vermouth.system.System)

• top_path (pathlib.Path) – path for topology file

• itp_paths (dict[str, pathlib.Path]) – list of paths for writing the topology param-
eters like atomtypes with the key being the name of the directive.

• C6C12 (bool) – write non-bonded interaction parameters using LJ C6C12 form

• defines (tuple(str)) – define statments to include in the topology

• header (tuple(str)) – any comment lines to include at the beginning

vermouth.gmx.topology.write_nonbond_params(system, itp_path, C6C12=False)
Writes the [nonbond_params] directive to file. All atomtypes are defined in system.gmx_topology_params.
Masses and further information are taken from the molecule directly.

Module contents

Provides functionality to read and write Gromacs specific files.

vermouth.pdb package

Submodules

vermouth.pdb.pdb module

Provides functions for reading and writing PDB files.

class vermouth.pdb.pdb.PDBParser(exclude=('SOL',), ignh=False, modelidx=1)
Bases: LineParser

Parser for PDB files

active_molecule

The molecule/model currently being read.

Type
vermouth.molecule.Molecule

6.1. vermouth package 45

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

molecules

All complete molecules read so far.

Type
list[vermouth.molecule.Molecule]

modelidx

Which model to take.

Type
int

Parameters

• exclude (collections.abc.Container[str]) – Container of residue names. Any atom
that has a residue name that is in exclude will be skipped.

• ignh (bool) – Whether all hydrogen atoms should be skipped

• modelidx (int) – Which model to take.

static anisou(line, lineno=0)
Does nothing.

atom(line, lineno=0)
Parse an ATOM or HETATM record.

Parameters

• line (str) – The line to parse. We do not check whether it starts with either “ATOM “ or
“HETATM”.

• lineno (int) – The line number (not used).

static author(line, lineno=0)
Does nothing.

static caveat(line, lineno=0)
Does nothing.

static cispep(line, lineno=0)
Does nothing.

static compnd(line, lineno=0)
Does nothing.

conect(line, lineno=0)
Parse a CONECT record. The line is stored for later processing.

Parameters

• line (str) – The line to parse. Should start with CONECT, but this is not checked

• lineno (int) – The line number (not used).

cryst1(line, lineno=0)
Parse the CRYST1 record. Crystal structure information are stored with the parser object and may be
extracted later.

static dbref(line, lineno=0)
Does nothing.

46 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Container
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

VerMoUTH Documentation, Release 0.10.1.dev55

static dbref1(line, lineno=0)
Does nothing.

static dbref2(line, lineno=0)
Does nothing.

dispatch(line)
Returns the appropriate method for parsing line. This is determined based on the first 6 characters of line.

Parameters
line (str)

Returns
The method to call with the line, and the line number.

Return type
collections.abc.Callable[str, int]

do_conect()

Apply connections to molecule based on CONECT records read from PDB file

end(line='', lineno=0)
Finish parsing the molecule. active_molecule will be appended to molecules, and a new
active_molecule will be made.

endmdl(line='', lineno=0)
Finish parsing the molecule. active_molecule will be appended to molecules, and a new
active_molecule will be made.

static expdta(line, lineno=0)
Does nothing.

finalize(lineno=0)
Finish parsing the file. Process all CONECT records found, and returns a list of molecules.

Parameters
lineno (int) – The line number (not used).

Returns
All molecules parsed from this file.

Return type
list[vermouth.molecule.Molecule]

static formul(line, lineno=0)
Does nothing.

static header(line, lineno=0)
Does nothing.

static helix(line, lineno=0)
Does nothing.

static het(line, lineno=0)
Does nothing.

hetatm(line, lineno=0)
Parse an ATOM or HETATM record.

Parameters

6.1. vermouth package 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

VerMoUTH Documentation, Release 0.10.1.dev55

• line (str) – The line to parse. We do not check whether it starts with either “ATOM “ or
“HETATM”.

• lineno (int) – The line number (not used).

static hetnam(line, lineno=0)
Does nothing.

static hetsyn(line, lineno=0)
Does nothing.

static jrnl(line, lineno=0)
Does nothing.

static keywds(line, lineno=0)
Does nothing.

static link(line, lineno=0)
Does nothing.

static master(line, lineno=0)
Does nothing.

static mdltyp(line, lineno=0)
Does nothing.

model(line, lineno=0)
Parse a MODEL record. If the model is not the same as modelidx, this model will not be parsed.

Parameters

• line (str) – The line to parse. Should start with “MODEL “, but this is not checked.

• lineno (int) – The line number (not used).

static modres(line, lineno=0)
Does nothing.

static mtrix1(line, lineno=0)
Does nothing.

static mtrix2(line, lineno=0)
Does nothing.

static mtrix3(line, lineno=0)
Does nothing.

static nummdl(line, lineno=0)
Does nothing.

static obslte(line, lineno=0)
Does nothing.

static origx1(line, lineno=0)
Does nothing.

static origx2(line, lineno=0)
Does nothing.

48 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

VerMoUTH Documentation, Release 0.10.1.dev55

static origx3(line, lineno=0)
Does nothing.

parse(file_handle)

static remark(line, lineno=0)
Does nothing.

static revdat(line, lineno=0)
Does nothing.

static scale1(line, lineno=0)
Does nothing.

static scale2(line, lineno=0)
Does nothing.

static scale3(line, lineno=0)
Does nothing.

static seqadv(line, lineno=0)
Does nothing.

static seqres(line, lineno=0)
Does nothing.

static sheet(line, lineno=0)
Does nothing.

static site(line, lineno=0)
Does nothing.

static source(line, lineno=0)
Does nothing.

static splt(line, lineno=0)
Does nothing.

static sprsde(line, lineno=0)
Does nothing.

static ssbond(line, lineno=0)
Does nothing.

ter(line='', lineno=0)
Finish parsing the molecule. active_molecule will be appended to molecules, and a new
active_molecule will be made.

static title(line, lineno=0)
Does nothing.

vermouth.pdb.pdb.get_not_none(node, attr, default)
Returns node[attr]. If it doesn’t exists or is None, return default.

Parameters

• node (collections.abc.Mapping)

• attr (collections.abc.Hashable)

6.1. vermouth package 49

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable

VerMoUTH Documentation, Release 0.10.1.dev55

• default – The value to return if node[attr] is either None, or does not exist.

Returns
The value of node[attr] if it exists and is not None, else default.

Return type
object

vermouth.pdb.pdb.read_pdb(file_name, exclude=('SOL',), ignh=False, modelidx=1)
Parse a PDB file to create a molecule.

Parameters

• filename (str) – The file to read.

• exclude (collections.abc.Container[str]) – Atoms that have one of these residue
names will not be included.

• ignh (bool) – Whether hydrogen atoms should be ignored.

• model (int) – If the PDB file contains multiple models, which one to select.

Returns
The parsed molecules. Will only contain edges if the PDB file has CONECT records. Either way,
the molecules might be disconnected. Entries separated by TER, ENDMDL, and END records
will result in separate molecules.

Return type
list[vermouth.molecule.Molecule]

vermouth.pdb.pdb.write_pdb(system, path, conect=True, omit_charges=True, nan_missing_pos=False,
defer_writing=True)

Writes system to path as a PDB formatted string.

Parameters

• system (vermouth.system.System) – The system to write.

• path (str) – The file to write to.

• conect (bool) – Whether to write CONECT records for the edges.

• omit_charges (bool) – Whether charges should be omitted. This is usually a good idea
since the PDB format can only deal with integer charges.

• nan_missing_pos (bool) – Whether the writing should fail if an atom does not have a posi-
tion. When set to True, atoms without coordinates will be written with ‘nan’ as coordinates;
this will cause the output file to be invalid for most uses. for most use.

• defer_writing (bool) – Whether to use DeferredFileWriter for writing data

See also:

:func:write_pdb_string

vermouth.pdb.pdb.write_pdb_string(system, conect=True, omit_charges=True, nan_missing_pos=False)
Describes system as a PDB formatted string. Will create CONECT records from the edges in the molecules in
system iff conect is True.

Parameters

• system (vermouth.system.System) – The system to write.

• conect (bool) – Whether to write CONECT records for the edges.

50 Chapter 6. vermouth

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Container
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

VerMoUTH Documentation, Release 0.10.1.dev55

• omit_charges (bool) – Whether charges should be omitted. This is usually a good idea
since the PDB format can only deal with integer charges.

• nan_missing_pos (bool) – Wether the writing should fail if an atom does not have a posi-
tion. When set to True, atoms without coordinates will be written with ‘nan’ as coordinates;
this will cause the output file to be invalid for most uses.

Returns
The system as PDB formatted string.

Return type
str

Module contents

Provides functionality to read and write PDB files.

vermouth.processors package

Submodules

vermouth.processors.add_molecule_edges module

Processor adding edges between molecules.

class vermouth.processors.add_molecule_edges.AddMoleculeEdgesAtDistance(threshold,
templates_from,
templates_to,
attribute='position',
min_edges=0)

Bases: Processor

Processor that adds edges within and between molecules.

The processor adds edges between atoms, within or between molecules, when the atoms are part of the selections
provided for each end of the edges, and the atoms are closer than a given threshold.

Parameters

• threshold (float) – Distance threshold in nanometers under which to create an edge.

• templates_from (list[dict]) – List of node templates to select the atoms at one end of
the edges.

• templates_to (list[dict]) – List of node template to select the atoms at the other end
of the edges.

• attribute (str) – Name of the attribute under which are stores the coordinates.

See also:

vermouth.molecule.attributes_match

run_system(system)

Run the processor on the system.

6.1. vermouth package 51

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

class vermouth.processors.add_molecule_edges.MergeNucleicStrands(threshold=0.3, tem-
plates_donnors=({'atomname':
<Choice at 7fa3c0e2d220
value=['C2', 'N6']>, 'resname':
<Choice at 7fa3c0e2d1c0
value=['DA', 'DA3', 'DA5']>},
{'atomname': <Choice at
7fa3c0e2d820 value=['N1',
'N2']>, 'resname': <Choice at
7fa3c0e2d250 value=['DG',
'DG3', 'DG5']>}, {'atomname':
'N4', 'resname': <Choice at
7fa3c0e2d850 value=['DC',
'DC3', 'DC5']>}, {'atomname':
'N3', 'resname': <Choice at
7fa3c0e2d880 value=['DT',
'DT3', 'DT5']>}), tem-
plates_acceptors=({'atomname':
'N1', 'resname': <Choice at
7fa3c0e2d8b0 value=['DA',
'DA3', 'DA5']>}, {'atomname':
'O6', 'resname': <Choice at
7fa3c0e2d8e0 value=['DG',
'DG3', 'DG5']>}, {'atomname':
<Choice at 7fa3c0e2d940
value=['N3', 'O2']>, 'resname':
<Choice at 7fa3c0e2d910
value=['DC', 'DC3', 'DC5']>},
{'atomname': <Choice at
7fa3c0e2d9a0 value=['O2',
'O4']>, 'resname': <Choice at
7fa3c0e2d970 value=['DT',
'DT3', 'DT5']>}),
attribute='position')

Bases: AddMoleculeEdgesAtDistance

Add edges between complementary nucleic acid strands.

By default, the edges are added in place of the hydrogen bonds between complementary bases.

Parameters

• threshold (float) – Distance threshold in nanometers under which to create an edge.

• templates_donnors (list[dict]) – List of templates describing hydrogen donnors.

• templates_acceptors (list[dict]) – List of templates describing hydrogen acceptors.

• attribute (str) – Name of the attribute under which are store the node coordinates.

52 Chapter 6. vermouth

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.annotate_mut_mod module

Provides a processor that annotates a molecule with desired mutations and modifications.

class vermouth.processors.annotate_mut_mod.AnnotateMutMod(modifications=None, mutations=None)
Bases: Processor

Annotates residues to have the required ‘modification’ and ‘mutation’ attributes on all nodes.

modifications

Type
list[tuple[dict, str]]

mutations

Type
list[tuple[dict, str]]

See also:

annotate_modifications()

run_molecule(molecule)

run_system(system)

vermouth.processors.annotate_mut_mod.annotate_modifications(molecule, modifications, mutations,
resspec_counts)

Annotate nodes in molecule with the desired modifications and mutations

Parameters

• molecule (networkx.Graph)

• modifications (list[tuple[dict, str]]) – The modifications to apply. The first ele-
ment is a dictionary contain the attributes a residue has to fulfill. It can contain the elements
‘chain’, ‘resname’ and ‘resid’. The second element is the modification that should be applied.

• mutations (list[tuple[dict, str]]) – The mutations to apply. The first element is a
dictionary contain the attributes a residue has to fulfill. It can contain the elements ‘chain’,
‘resname’ and ‘resid’. The second element is the mutation that should be applied.

• resspec_counts (list[dict]) – List modified in place containing information about
whether a modification/mutation has been applied successfully. If the target is found, the
dictionary has one entry, {‘success’: True}. If not, ‘success’ is False and there are additional
items to indicate information about the failure.

Raises
NameError – When a modification is not recognized.

vermouth.processors.annotate_mut_mod.parse_residue_spec(resspec)
Parse a residue specification: [<chain>-][<resname>][[#]<resid>] where resid is /[0-9]+/. If resname ends in a
number and a resid is also specified, the # separator is required. Returns a dictionary with keys ‘chain’, ‘resname’,
and ‘resid’ for the fields that are specified. Resid will be an int.

Parameters
resspec (str)

Return type
dict

6.1. vermouth package 53

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#NameError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.annotate_mut_mod.residue_matches(resspec, residue_graph, res_idx)
Returns True iff resspec describes residue_graph.nodes[res_idx]. The ‘resname’s nter and cter match the residues
with a degree of 1 and with the lowest and highest residue numbers respectively.

Parameters

• resspec (dict) – Attributes that must be present in the residue node. ‘resname’ is treated
specially as described above.

• residue_graph (networkx.Graph) – A graph with one node per residue.

• res_idx (collections.abc.Hashable) – A node index in residue_graph.

Returns
Whether resspec describes the node res_idx in residue_graph.

Return type
bool

vermouth.processors.apply_posres module

class vermouth.processors.apply_posres.ApplyPosres(selector, force_constant, functype=1,
ifdef='POSRES')

Bases: Processor

run_molecule(molecule)

vermouth.processors.apply_posres.apply_posres(molecule, selector, force_constant, functype=1,
ifdef='POSRES')

vermouth.processors.apply_rubber_band module

Provides a processor that adds a rubber band elastic network.

class vermouth.processors.apply_rubber_band.ApplyRubberBand(lower_bound, upper_bound,
decay_factor, decay_power,
base_constant, minimum_force,
res_min_dist=None,
bond_type=None,
selector=<function select_backbone>,
bond_type_variable='elastic_network_bond_type',
res_min_dist_variable='elastic_network_res_min_dist',
domain_criterion=<function
always_true>)

Bases: Processor

Add an elastic network to a system between particles fulfilling the following criteria:

• They must be close enough together in space

• They must be separated far enough in graph space

• They must be either in the same chain/molecule/system

• They must be selected by selector

• The resulting elastic bond must be stiff enough

54 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#dict
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#bool

VerMoUTH Documentation, Release 0.10.1.dev55

selector

Selection function.

Type
collections.abc.Callable

lower_bound

The minimum length for a bond to be added, expressed in nanometers.

Type
float

upper_bound

The maximum length for a bond to be added, expressed in nanometers.

Type
float

decay_factor

Parameter for the decay function.

Type
float

decay_power

Parameter for the decay function.

Type
float

base_constant

The base force constant for the bonds in 𝑘𝐽.𝑚𝑜𝑙−1.𝑛𝑚−2. If ‘decay_factor’ or ‘decay_power’ is set to 0,
then it will be the used force constant.

Type
float

minimum_force

Minimum force constant in 𝑘𝐽.𝑚𝑜𝑙−1.𝑛𝑚−2 under which bonds are not kept.

Type
float

bond_type

Gromacs bond function type to apply to the elastic network bonds.

Type
int or None

bond_type_variable

If bond_type is not given, it will be taken from the force field, using this variable name.

Type
str

domain_criterion

Function to establish if two atoms are part of the same domain. Elastic bonds are only added within a
domain. By default, all the atoms in the molecule are considered part of the same domain. The function
expects a graph (e.g. a Molecule) and two atom node keys as argument and returns True if the two atoms
are part of the same domain; returns False otherwise.

6.1. vermouth package 55

https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

Type
collections.abc.Callable

res_min_dist

Minimum separation between two atoms for a bond to be kept. Bonds are kept is the separation is greater
or equal to the value given.

Type
int or None

res_min_dist_variable

If res_min_dist is not given it will be taken from the force field using this variable name.

Type
str

See also:

apply_rubber_band()

run_molecule(molecule)

vermouth.processors.apply_rubber_band.always_true(*args, **kwargs)
Returns True whatever the arguments are.

vermouth.processors.apply_rubber_band.apply_rubber_band(molecule, selector, lower_bound,
upper_bound, decay_factor, decay_power,
base_constant, minimum_force, bond_type,
domain_criterion, res_min_dist)

Adds a rubber band elastic network to a molecule.

The elastic network is applied as bounds between the atoms selected by the function declared with the ‘selector’
argument. The equilibrium length for the bonds is measured from the coordinates in the molecule, the force
constant is computed from the base force constant and an optional decay function.

The decay function for the force constant is defined as:

exp−𝑟(𝑑−𝑠)𝑝

where 𝑟 is the decay rate given by the ‘decay_factor’ argument, 𝑝 is the decay power given by ‘decay_power’, 𝑠
is a shift given by ‘lower_bound’, and 𝑑 is the distance between the two atoms in the molecule. If the rate or the
power are set to 0, then the decay function does not modify the force constant.

The ‘selector’ argument takes a callback that accepts a atom dictionary and returns True if the atom match the
conditions to be kept.

Only nodes that are in the same domain can be connected by the elastic network. The ‘domain_criterion’ argu-
ment accepts a callback that determines if two nodes are in the same domain. That callback accepts a graph and
two node keys as argument and returns whether or not the nodes are in the same domain as a boolean.

Parameters

• molecule (vermouth.molecule.Molecule) – The molecule to which apply the elastic
network. The molecule is modified in-place.

• selector (collections.abc.Callable) – Selection function.

• lower_bound (float) – The minimum length for a bond to be added, expressed in nanome-
ters.

• upper_bound (float) – The maximum length for a bond to be added, expressed in nanome-
ters.

56 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

VerMoUTH Documentation, Release 0.10.1.dev55

• decay_factor (float) – Parameter for the decay function.

• decay_power (float) – Parameter for the decay function.

• base_constant (float) – The base force constant for the bonds in 𝑘𝐽.𝑚𝑜𝑙−1.𝑛𝑚−2. If
‘decay_factor’ or ‘decay_power’ is set to 0, then it will be the used force constant.

• minimum_force (float) – Minimum force constant in 𝑘𝐽.𝑚𝑜𝑙−1.𝑛𝑚−2 under which bonds
are not kept.

• bond_type (int) – Gromacs bond function type to apply to the elastic network bonds.

• domain_criterion (collections.abc.Callable) – Function to establish if two atoms
are part of the same domain. Elastic bonds are only added within a domain. By default, all
the atoms in the molecule are considered part of the same domain. The function expects a
graph (e.g. a Molecule) and two atom node keys as argument and returns True if the two
atoms are part of the same domain; returns False otherwise.

• res_min_dist (int) – Minimum separation between two atoms for a bond to be kept.
Bonds are kept is the separation is greater or equal to the value given.

vermouth.processors.apply_rubber_band.are_connected(graph, left, right, separation)
True if the nodes are at most ‘separation’ nodes away.

Parameters

• graph (networkx.Graph) – The graph/molecule to work on.

• left – One node key from the graph.

• right – One node key from the graph.

• separation (int) – The maximum number of nodes in the shortest path between two nodes
of interest for these two nodes to be considered connected. Must be >= 0.

Return type
bool

vermouth.processors.apply_rubber_band.build_connectivity_matrix(graph, separation, node_to_idx,
selected_nodes)

Build a connectivity matrix based on the separation between nodes in a graph.

The connectivity matrix is a symmetric boolean matrix where cells contain True if the corresponding atoms are
connected in the graph and separated by less or as much nodes as the given ‘separation’ argument.

In the following examples, the separation between A and B is 0, 1, and 2. respectively:

` A - B A - X - B A - X - X - B `

Note that building the connectivity matrix with a separation of 0 is the same as building the adjacency matrix.

Parameters

• graph (networkx.Graph) – The graph/molecule to work on.

• separation (int) – The maximum number of nodes in the shortest path between two nodes
of interest for these two nodes to be considered connected. Must be >= 0.

• selected_nodes (collections.abc.Collection) – A list of nodes to work on.

Returns
A boolean matrix.

Return type
numpy.ndarray

6.1. vermouth package 57

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#int
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.apply_rubber_band.build_pair_matrix(graph, criterion, idx_to_node,
selected_nodes)

Build a boolean matrix telling if a pair of nodes fulfil a criterion.

Parameters

• graph (networkx.Graph) – The graph/molecule to work on.

• criterion (collections.abc.Callable) – A function that determines if a pair of nodes
fulfill the criterion. It takes a graph and two node keys as arguments and returns a boolean.

• selected_nodes (collections.abc.Collection) – A list of nodes to work on.

Returns
A boolean matrix.

Return type
numpy.ndarray

vermouth.processors.apply_rubber_band.compute_decay(distance, shift, rate, power)
Compute the decay function of the force constant as function to the distance.

The decay function for the force constant is defined as:

exp−𝑟(𝑑−𝑠)𝑝

where 𝑟 is the decay rate given by the ‘rate’ argument, 𝑝 is the decay power given by ‘power’, 𝑠 is a shift given
by ‘shift’, and 𝑑 is the distance between the two atoms given in ‘distance’. If the rate or the power are set to 0,
then the decay function does not modify the force constant.

The ‘distance’ argument can be a scalar or a numpy array. If it is an array, then the returned value is an array of
decay factors with the same shape as the input.

vermouth.processors.apply_rubber_band.compute_force_constants(distance_matrix, lower_bound,
upper_bound, decay_factor,
decay_power, base_constant,
minimum_force)

Compute the force constant of an elastic network bond.

The force constant can be modified with a decay function, and it can be bounded with a minimum threshold, or
a distance upper and lower bonds.

If decay_factor = decay_power = 0 all forces applied are = base_constant

Forces applied to distances above upper_bound are removed. Forces below minimum_force are removed.

If decay_factor or decay_power != 0, forces below lower_bound are greater than base_constant, in which case
they are set back to = base_constant

vermouth.processors.apply_rubber_band.make_same_region_criterion(regions)
Returns True is the nodes are part of the same region.

Nodes are considered part of the same region if their value under the “resid” attribute are within the same residue
range. By default the resids of the input file are used (i.e. “_old_resid” attribute).

Parameters

• graph (networkx.Graph) – A graph the nodes are part of.

• left – A node key in ‘graph’.

• right – A node key in ‘graph’.

58 Chapter 6. vermouth

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph

VerMoUTH Documentation, Release 0.10.1.dev55

• regions – [(resid_start_1,resid_end_1),(resid_start_2,resid_end_2),. . .] resid_start and
resid_end are included)

Returns
True if the nodes are part of the same region.

Return type
bool

vermouth.processors.apply_rubber_band.same_chain(graph, left, right)
Returns True is the nodes are part of the same chain.

Nodes are considered part of the same chain if they both have the same value under the “chain” attribute, or if
neither of the 2 nodes have that attribute.

Parameters

• graph (networkx.Graph) – A graph the nodes are part of.

• left – A node key in ‘graph’.

• right – A node key in ‘graph’.

Returns
True if the nodes are part of the same chain.

Return type
bool

vermouth.processors.apply_rubber_band.self_distance_matrix(coordinates)
Compute a distance matrix between points in a selection.

Notes

This function does not account for periodic boundary conditions.

Parameters
coordinates (numpy.ndarray) – Coordinates of the points in the selection. Each row must
correspond to a point and each column to a dimension.

Return type
numpy.ndarray

vermouth.processors.attach_mass module

Provides a processor that assigns a mass attribute to every node in a molecule based on it’s element.

class vermouth.processors.attach_mass.AttachMass(attribute='mass')
Bases: Processor

run_molecule(molecule)

vermouth.processors.attach_mass.attach_mass(molecule, attribute='mass')
For every atom in molecule look up it’s element in ATOM_MASSES, and assign that value to attribute.

Parameters

• molecule (networkx.Graph) – The molecule to process. Is modified in-place.

• attribute (collections.abc.Hashable) – The attribute the mass is assigned to.

6.1. vermouth package 59

https://docs.python.org/3/library/functions.html#bool
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.average_beads module

Provides a processor that generates positions for nodes based on the weighted average of the positions of the atoms they
are constructed from.

class vermouth.processors.average_beads.DoAverageBead(ignore_missing_graphs=False, weight=None)
Bases: Processor

run_molecule(molecule)

vermouth.processors.average_beads.do_average_bead(molecule, ignore_missing_graphs=False,
weight=None)

Set the position of the particles to the mean of the underlying atoms.

This requires the atoms to have a ‘graph’ attributes. By default, a ValueError is raised if any atom in the
molecule is missing that ‘graph’ attribute. This behavior can be changed by setting the ‘ignore_missing_graphs’
argument to True, then the average positions are computed, but the atoms without a ‘graph’ attribute are skipped.

The average is weighted using the ‘mapping_weights’ atom attribute. If the ‘mapping_weights’ attribute is set,
it has to be a dictionary with the atomname from the underlying graph as keys, and the weights as values. Atoms
without a weight set use a default weight of 1.

The average can also be weighted using an arbitrary node attribute by giving the attribute name with the weight
keyword argument. This can be used to get the center of mass for instance; assuming the mass of the underlying
atoms is stored under the “mass” attribute, setting weight to “mass” will place the bead at the center of mass. By
default, weight is set to None and the center of geometry is used.

The atoms in the underlying graph must have a position. If they do not, they are ignored from the average.

Parameters

• molecule (vermouth.molecule.Molecule) – The molecule to update. The attribute po-
sition of the particles is updated on place. The nodes of the molecule must have an attribute
graph that contains the subgraph of the initial molecule.

• ignore_missing_graphs (bool) – If True, skip the atoms that do not have a graph at-
tribute; else fail if not all the atoms in the molecule have a graph attribute.

• weight (collections.abc.Hashable) – The name of the attribute used to weight the
position of the node. The attribute is read from the underlying atoms.

vermouth.processors.canonicalize_modifications module

Provides a Processor that identifies unexpected atoms such as PTMs and protonations, and canonicalizes their attributes
based on modifications known in the forcefield.

class vermouth.processors.canonicalize_modifications.CanonicalizeModifications

Bases: Processor

Identifies all modifications in a molecule and corrects their atom names.

See also:

fix_ptm()

run_molecule(molecule)

60 Chapter 6. vermouth

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.canonicalize_modifications.allowed_ptms(residue, res_ptms, known_ptms)
Finds all PTMs in known_ptms which might be relevant for residue.

Parameters

• residue (networkx.Graph)

• res_ptms (list[tuple[set, set]]) – As returned by find_PTM_atoms. Currently not
used.

• known_ptms (collections.abc.Mapping[str, networkx.Graph])

Yields
tuple[networkx.Graph, networkx.isomorphism.GraphMatcher] – All graphs in known_ptms
which are subgraphs of residue.

vermouth.processors.canonicalize_modifications.find_ptm_atoms(molecule)
Finds all atoms in molecule that have the node attribute PTM_atom set to a value that evaluates to True. molecule
will be traversed starting at these atoms until all marked atoms are visited such that they are identified per
“branch”, and for every branch the anchor node is known. The anchor node is the node(s) which are not PTM
atoms and share an edge with the traversed branch.

Parameters
molecule (networkx.Graph)

Returns
[({ptm atom indices}, {anchor indices}), ...]. Ptm atom indices are connected,
and are connected to the rest of molecule via anchor indices.

Return type
list[tuple[set, set]]

vermouth.processors.canonicalize_modifications.fix_ptm(molecule)
Canonizes all PTM atoms in molecule, and labels the relevant residues with which PTMs were recognized.
Modifies molecule such that atom names of PTM atoms are corrected, and the relevant residues have been
labeled with which PTMs were recognized.

Parameters
molecule (networkx.Graph) – Must not have missing atoms, and atom names must be correct.
Atoms which could not be recognized must be labeled with the attribute PTM_atom=True.

vermouth.processors.canonicalize_modifications.identify_ptms(residue, residue_ptms, known_ptms)
Identifies all PTMs in known_PTMs necessary to describe all PTM atoms in residue_ptms. Will take PTMs
such that all PTM atoms in residue will be covered by applying PTMs from known_PTMs in order. Nodes in
residue must have correct atomname attributes, and may not be missing. In addition, every PTM in must be
anchored to a non-PTM atom.

Parameters

• residue (networkx.Graph) – The residues involved with these PTMs. Need not be con-
nected.

• residue_ptms (list[tuple[set, set]]) – As returned by find_PTM_atoms, but only
those relevant for residue.

• known_PTMs (collections.abc.Sequence[tuple[networkx.Graph, networkx.
isomorphism.GraphMatcher]]) – The nodes in the graph must have the PTM_atom
attribute (True or False). It should be True for atoms that are not part of the PTM itself,
but describe where it is attached to the molecule. In addition, its nodes must have the
atomname attribute, which will be used to recognize where the PTM is anchored, or to
correct the atom names. Lastly, the nodes may have a replace attribute, which is a dictionary

6.1. vermouth package 61

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/stdtypes.html#tuple
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/latest/reference/algorithms/isomorphism.vf2.html#module-networkx.algorithms.isomorphism.isomorphvf2
https://networkx.org/documentation/latest/reference/algorithms/isomorphism.vf2.html#module-networkx.algorithms.isomorphism.isomorphvf2

VerMoUTH Documentation, Release 0.10.1.dev55

of {attribute_name: new_value} pairs. The special case here is if attribute_name is
'atomname' and new_value is None: in this case the node will be removed. Lastly, the
graph (not its nodes) needs a ‘name’ attribute.

Returns
All PTMs from known_PTMs needed to describe the PTM atoms in residue along with a dict
of node correspondences. The order of known_PTMs is preserved.

Return type
list[tuple[networkx.Graph, dict]]

Raises
KeyError – Not all PTM atoms in residue can be covered with known_PTMs.

vermouth.processors.canonicalize_modifications.ptm_node_matcher(node1, node2)
Returns True iff node1 and node2 should be considered equal. This means they are both either marked as
PTM_atom, or not. If they both are PTM atoms, the elements need to match, and otherwise, the atom names
must match.

vermouth.processors.do_links module

class vermouth.processors.do_links.DoLinks

Bases: Processor

Apply Links, taken from a molecule’s force field, to the molecule.

run_molecule(molecule)

vermouth.processors.do_links.match_link(molecule, link)

vermouth.processors.do_links.match_order(order1, resid1, order2, resid2)
Check if two residues match the order constraints.

The order can be:

an integer
It is then the expected distance in resid with a reference residue.

a series of >
This indicates that the residue must have a larger resid than a reference residue. Multiple atoms with the
same number of > are expected to be part of the same residue. The more > are in the serie, the further away
the residue is expected to be from the reference, so a residue with >> is expected to have a greater resid
than a residue with >.

a series of <
Same as a series of >, but for smaller resid.

a series of *
This indicates a different residue than the reference, but without a specified order. As for the > or the <,
atoms with the same number of * are expected to be part of the same residue.

The comparison matrix can be sumerized as follow, with 0 being the reference residue, n being an integer. In the
matrix, a ? means that the result depends on the comparison of the actual numbers, a ! means that the comparison
should not be considered, and / means that the resids must be different. The rows correspond to the order at the
left of the comparison (order1 argument), while the columns correspond to the order at the right of it (order2
argument).

62 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#KeyError

VerMoUTH Documentation, Release 0.10.1.dev55

> >> < << n 0 * **
> = < > > ! > ! !
>> > = > > ! > ! !
< < < = > ! < ! !
<< < < < = ! < ! !
n ! ! ! ! ? ? ! !
0 < < > > ? = / /
* ! ! ! ! ! / = /
** ! ! ! ! ! / / =

Parameters

• order1 (int or str) – The order attribute of the residue on the left of the comparison.

• resid1 (int) – The residue id of the residue on the left of the comparison.

• order2 (int or str) – The order attribute of the residue on the right of the comparison.

• resid2 (int) – The residue id of the residue on the right of the comparison.

Returns
True if the conditions match.

Return type
bool

Raises
ValueError – Raised if the order arguments do not follow the expected format.

vermouth.processors.do_mapping module

Provides a processor that can perform a resolution transformation on a molecule.

class vermouth.processors.do_mapping.DoMapping(mappings, to_ff , delete_unknown=False,
attribute_keep=(), attribute_must=(),
attribute_stash=())

Bases: Processor

Processor for performing a resolution transformation from one force field to another.

This processor will create new Molecules by stitching together Blocks from the target force field, as dictated by
the available mappings. Fragments/atoms/residues/modifications for which no mapping is available will not be
represented in the resulting molecule.

The resulting molecules will have intra-block edges and interactions as specified in the blocks from the target
force field. Inter-block edges will be added based on the connectivity of the original molecule, but no interactions
will be added for those.

mappings

{ff_name: {ff_name: {block_name: (mapping, weights, extra)}}} A collection of map-
pings, as returned by e.g. read_mapping_directory().

Type
dict[str, dict[str, dict[str, tuple]]]

to_ff

The force field to map to.

6.1. vermouth package 63

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

VerMoUTH Documentation, Release 0.10.1.dev55

Type
vermouth.forcefield.ForceField

delete_unknown

Not currently used

Type
bool

attribute_keep

The attributes that will always be transferred from the input molecule to the produced graph.

Type
tuple[str]

attribute_must

The attributes that the nodes in the output graph must have. If they’re not provided by the mappings/blocks
they’re taken from the original molecule.

Type
tuple[str]

attribute_stash

The attributes that will always be transferred from the input molecule to the produced graph, but prefixed
with _old_.Thus they are new attributes and are not conflicting with already defined attributes.

Type
tuple[str]

See also:

do_mapping()

run_molecule(molecule)

run_system(system)

vermouth.processors.do_mapping.apply_block_mapping(match, molecule, graph_out, mol_to_out,
out_to_mol)

Performs a mapping operation for a “block”. match is a tuple of 3 elements that describes what nodes in
molecule should correspond to a vermouth.molecule.Block that should be added to graph_out, and any
atoms that should be used a references. Add the required vermouth.molecule.Block to graph_out, and up-
dates mol_to_out and out_to_mol in-place.

Parameters

• match

• molecule (networkx.Graph) – The original molecule

• graph_out (vermouth.molecule.Molecule) – The newly created graph that describes
molecule at a different resolution.

• mol_to_out (dict[collections.abc.Hashable, dict[collections.abc.
Hashable, float]]) – A dict mapping nodes in molecule to nodes in graph_out
with the associated weights.

• out_to_mol (dict[collections.abc.Hashable, dict[collections.abc.
Hashable, float]]) – A dict mapping nodes in graph_out to nodes in molecule
with the associated weights.

Returns

64 Chapter 6. vermouth

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#float

VerMoUTH Documentation, Release 0.10.1.dev55

• set – A set of all overlapping nodes that were already mapped before.

• set – A set of none-to-one mappings. I.e. nodes that were created without nodes mapping to
them.

• dict – A dict of reference atoms, mapping graph_out nodes to nodes in molecule.

vermouth.processors.do_mapping.apply_mod_mapping(match, molecule, graph_out, mol_to_out,
out_to_mol)

Performs the mapping operation for a modification.

Parameters

• match

• molecule (networkx.Graph) – The original molecule

• graph_out (vermouth.molecule.Molecule) – The newly created graph that describes
molecule at a different resolution.

• mol_to_out (dict[collections.abc.Hashable, dict[collections.abc.
Hashable, float]]) – A dict mapping nodes in molecule to nodes in graph_out
with the associated weights.

• out_to_mol (dict[collections.abc.Hashable, dict[collections.abc.
Hashable, float]]) – A dict mapping nodes in graph_out to nodes in molecule
with the associated weights.

Returns

• dict[str, dict[tuple, vermouth.molecule.Link]] – A dict of all modifications that have been
applied by this modification mapping operations. Maps interaction type to involved atoms
to the modification responsible.

• dict – A dict of reference atoms, mapping graph_out nodes to nodes in molecule.

vermouth.processors.do_mapping.attrs_from_node(node, attrs)
Helper function that applies a “replace” operations on the node if required, and then returns a dict of the attributes
listed in attrs.

Parameters

• node (dict)

• attrs (collections.abc.Container) – Attributes that should be in the output.

Return type
dict

vermouth.processors.do_mapping.build_graph_mapping_collection(from_ff , to_ff , mappings)
Function that produces a collection of vermouth.map_parser.Mapping objects. Hereby deprecated.

Parameters

• from_ff (vermouth.forcefield.ForceField) – Origin force field.

• to_ff (vermouth.forcefield.ForceField) – Destination force field.

• mappings (dict[str, dict[str, vermouth.map_parser.Mapping]]) – All known
mappings

Returns
A collection of mappings that map from from_ff to to_ff.

6.1. vermouth package 65

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Container
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

Return type
collections.abc.Iterable

vermouth.processors.do_mapping.cover(to_cover, options)
Implements a recursive backtracking algorithm to cover all elements of to_cover with the elements from options
that have the lowest index. In this context “to cover” means that all items in an element of options must be in
to_cover. Elements in to_cover can only be covered once.

Parameters

• to_cover (collections.abc.MutableSet) – The items that should be covered.

• options (collections.abc.Sequence[collections.abc.MutableSet]) – The ele-
ments that can be used to cover to_cover. All items in an element of options must be present
in to_cover to qualify.

Returns
None if no covering can be found, or the list of items from options with the lowest indices that
exactly covers to_cover.

Return type
None or list

vermouth.processors.do_mapping.do_mapping(molecule, mappings, to_ff , attribute_keep=(),
attribute_must=(), attribute_stash=())

Creates a new Molecule in force field to_ff from molecule, based on mappings. It does this by doing a subgraph
isomorphism of all blocks in mappings and molecule. Will issue warnings if there’s atoms not contributing to the
new molecule, or if there’s overlapping blocks. Node attributes in the new molecule will come from the blocks
constructing it, except for those in attribute_keep, which lists the attributes that will be kept from molecule.

Parameters

• molecule (Molecule) – The molecule to transform.

• mappings (dict[str, dict[str, dict[str, tuple]]]) – {ff_name:
{ff_name: {block_name: (mapping, weights, extra)}}} A collection of
mappings, as returned by e.g. read_mapping_directory().

• to_ff (ForceField) – The force field to transform to.

• attribute_keep (Iterable) – The attributes that will always be transferred from molecule
to the produced graph.

• attribute_must (Iterable) – The attributes that the nodes in the output graph must have.
If they’re not provided by the mappings/blocks they’re taken from molecule.

• attribute_stash (tuple[str]) – The attributes that will always be transferred from the
input molecule to the produced graph, but prefixed with _old_.Thus they are new attributes
and are not conflicting with already defined attributes.

Returns
A new molecule, created by transforming molecule to to_ff according to mappings.

Return type
Molecule

vermouth.processors.do_mapping.edge_matcher(graph1, graph2, node11, node12, node21, node22)
Checks whether the resids for node11 and node12 in graph1 are the same, and whether that’s also true for node21
and node22 in graph2.

Parameters

• graph1 (networkx.Graph)

66 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSet
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSet
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph

VerMoUTH Documentation, Release 0.10.1.dev55

• graph2 (networkx.Graph)

• node11 (collections.abc.Hashable) – A node key in graph1.

• node12 (collections.abc.Hashable) – A node key in graph1.

• node21 (collections.abc.Hashable) – A node key in graph2.

• node22 (collections.abc.Hashable) – A node key in graph2.

Return type
bool

vermouth.processors.do_mapping.get_mod_mappings(mappings)
Returns a dict of all known modification mappings.

Parameters
mappings (collections.abc.Iterable[vermouth.map_parser.Mapping]) – All known
mappings.

Returns
All mappings that describe a modification mapping.

Return type
dict[tuple[str], vermouth.map_parser.Mapping]

vermouth.processors.do_mapping.modification_matches(molecule, mappings)
Returns a minimal combination of modification mappings and where they should be applied that describes all
modifications in molecule.

Parameters

• molecule (networkx.Graph) – The molecule whose modifications should be treated.
Modifications are described by the ‘modifications’ node attribute.

• mappings (collections.abc.Iterable[vermouth.map_parser.Mapping]) – All
known mappings.

Returns

A list with the following items:

Dict describing the correspondence of node keys in molecule to
node keys in the modification.

The modification.

Dict with all reference atoms, mapping modification nodes to
nodes in molecule.

Return type
list[tuple[dict, vermouth.molecule.Link, dict]]

vermouth.processors.do_mapping.node_matcher(node1, node2)
Checks whether nodes should be considered equal for isomorphism. Takes all attributes in node2 into account,
except for the attributes “atype”, “charge”, “charge_group”, “resid”, “replace”, and “_old_atomname”.

Parameters

• node1 (dict)

• node2 (dict)

Return type
bool

6.1. vermouth package 67

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.do_mapping.node_should_exist(modification, node_idx)
Returns True if the node with index node_idx in modification should already exist in the parent molecule.

Parameters

• modification (networkx.Graph)

• node_idx (collections.abc.Hashable) – The key of a node in modification.

Returns
True iff the node node_idx in modification should already exist in the parent molecule.

Return type
bool

vermouth.processors.do_mapping.ptm_resname_match(mol_node, map_node)
As node_matcher(), except that empty resname and false PTM_atom attributes from node2 are removed.

vermouth.processors.gro_reader module

Provides a processor that reads a GRO file.

See also:

vermouth.gmx.gro

class vermouth.processors.gro_reader.GROInput(filename, exclude=(), ignh=False)
Bases: Processor

run_system(system)

vermouth.processors.locate_charge_dummies module

Provides a processor that generates positions for every charge dummy.

class vermouth.processors.locate_charge_dummies.LocateChargeDummies(attribute_tag='charge_dummy')
Bases: Processor

run_molecule(molecule)

vermouth.processors.locate_charge_dummies.colinear_pair()

Build two points on a line around the origin at a random orientation.

vermouth.processors.locate_charge_dummies.fibonacci_sphere(n_samples)
Place points near-evenly distributed on a sphere.

Use the Fibonacci sphere algorithm to place ‘n_samples’ points at the surface of a sphere of radius 1, centered
on the origin.

Parameters
n_samples (int) – Number of points to place.

Returns
3D coordinates of the points.

Return type
numpy.ndarray

68 Chapter 6. vermouth

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.locate_charge_dummies.find_anchor(molecule, node_key,
attribute_tag='charge_dummy')

Find the non-dummy bead to which a charge dummy is anchored.

Each charge dummy has to be attached to exactly one non-dummy atom. This function returns the node key for
that non-dummy atom.

Parameters

• molecule (networkx.Graph) – The molecule to work on.

• node_key – The node key of the charge dummy.

• attribute_tag (str) – The name of the atom attribute used to describe charge dummies.

Returns
The node key of the anchor in the molecule graph.

Return type
collections.abc.Hashable

Raises
ValueError – Raised if there are no anchor, or more than one anchor, found. Raised also if the
charge dummy is not a charge dummy.

vermouth.processors.locate_charge_dummies.locate_all_dummies(molecule,
attribute_tag='charge_dummy')

Set the position of all charge dummies of a molecule.

The molecule is modified in-place.

The charge dummies are placed at a distance to the anchor defined in nm by their charge dummy attribute, the
name of which is given in the ‘attribute_tag’ argument.

Parameters

• molecule (vermouth.molecule.Molecule) – The molecule to work on.

• attribute_tag (str) – Name of the atom attribute that describe charge dummies.

vermouth.processors.locate_charge_dummies.locate_dummy(molecule, anchor_key, dummy_keys,
attribute_tag='charge_dummy')

Set the position of a group of charge dummies around a non-dummy anchor.

The molecule is modified in-place.

The charge dummies are placed at a distance to the anchor defined in nm by their charge dummy attribute, the
name of which is given in the ‘attribute_tag’ argument.

Parameters

• molecule (vermouth.molecule.Molecule) – The molecule to work on.

• anchor_key – The key of the non-dummy anchor all the charge dummies are connected to.

• dummy_keys (collections.abc.Iterable) – A collection of atom keys for charge dum-
mies to position.

• attribute_tag (str) – Name of the atom attribute that describe charge dummies.

6.1. vermouth package 69

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.make_bonds module

Provides a processor that can add edges to a graph based on geometric criteria.

class vermouth.processors.make_bonds.MakeBonds(allow_name=True, allow_dist=True, fudge=1.2)
Bases: Processor

Processor to add edges to a system and separate it into separate connected molecules.

Two separate criteria are used to decide where to add edges. The system’s molecules are separated into residues.
Then intra-residue edges are added.

If allow_names is True, the corresponding Block is looked up in the system’s force field. First edges will be
added based on the edges in that block. In addition, non-edges in the reference block are also stored.

Secondly, if allow_dist is True, edges will be added between any atoms that are close enough together. The
threshold for “close enough” is determined based on the elements of the atoms in question and their van der Waals
radii, multiplied by fudge. This way edges will not be added between atoms that were marked as ‘non-edge’ in
the previous step, nor between residues if one of the atoms is a hydrogen.

allow_names

Whether edges should be added based on atom names.

Type
bool

allow_dist

Whether edges should be added based on distance.

Type
bool

fudge

A fudge factor used to increase the reference van der Waals radii to allow for conformations that are slightly
out of equilibrium.

Type
Number

See also:

make_bonds()

run_system(system)

vermouth.processors.make_bonds.make_bonds(system, allow_name=True, allow_dist=True, fudge=1.2)
Creates bonds within molecules in the system.

First, edges will be created based on residue and atom names. Second, edges will be created based on a distance
criterion. Nodes in system must have position and element attributes. The possible distance between nodes is
determined by values in VDW_RADII. Edges within residues will only be guessed between atoms that are not
known in the reference Block. The system will be split into connected components, keeping residues (identified
by chain, residue name and residue id) within the same molecule. This does mean that the final molecules can
be disconnected.

70 Chapter 6. vermouth

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/numbers.html#numbers.Number

VerMoUTH Documentation, Release 0.10.1.dev55

Notes

Edges for residues for which no block can be found will be added based on
the distance criterion. A warning will be issued if this is the case.

Elements that are not in VDW_RADII do not make bonds based on distances.

Parameters

• system (System) – The system in which to add edges.

• fudge (Number) – Scale the allowed distance by this factor.

Returns
Molecules in system, in which edges have been added based on atom names and possibly distance.
The molecules have been split into connected components keeping residues intact. Molecules can
be disconnected within residues.

Return type
List[Molecule]

vermouth.processors.merge_all_molecules module

Provides a processor that merges all the molecules from a system.

class vermouth.processors.merge_all_molecules.MergeAllMolecules

Bases: Processor

Merge all the molecules from a system.

The molecules are merged into the first molecule of the system. Nothing is done if there are no molecules.

static run_molecule(molecule)

run_system(system)

vermouth.processors.merge_chains module

Merge molecules by chain.

class vermouth.processors.merge_chains.MergeChains(chains)
Bases: Processor

name = 'MergeChains'

run_system(system)

vermouth.processors.merge_chains.merge_chains(system, chains)
Merge molecules with the given chains as a single molecule.

Molecules are merged into the resulting molecule if their chain is in the list of chains to merge. The resulting
molecule is not connected.

If a molecule comprises multiple chains, then it is merged only if all the chains it comprises are part of the
selection.

The meta variable are not conserved in the process.

The input system is modified in-place.

6.1. vermouth package 71

https://docs.python.org/3/library/numbers.html#numbers.Number

VerMoUTH Documentation, Release 0.10.1.dev55

Parameters

• system (vermouth.system.System) – The system to modify.

• chains (list[str]) – A container of chain identifier.

vermouth.processors.name_moltype module

Provides a processor to assign molecule type names to molecules.

A molecule type (moltype) is Gromacs’s concept of a molecule. Providing a name for a molecule type is required to
write an ITP file for that molecule. We also use the molecule type name to group molecules sharing the same molecule
type. Molecule type identity is tested based on vermouth.molecule.Molecule.share_moltype_with().

class vermouth.processors.name_moltype.NameMolType(deduplicate=True, meta_key='moltype')
Bases: Processor

Assigns molecule type (moltype) names to molecules.

Moltype names are the names given to molecules in an ITP file. This processor assign consecutive names to the
molecule. If the deduplicate argument is set to True, then the processor assigns the same name to all molecules
with the same topology.

By default, the moltype name is written under the “moltype” key of the molecule meta attributes. This key can
be changed with the meta_key argument.

Parameters

• deduplicate (bool) – If True, the same name is given to all the molecules that share the
same topology. Else, each molecule is given a different name.

• meta_key (str) – The name of the key in the molecule meta dictionary under which the
moltype must be stored.

See also:

vermouth.processors.set_molecule_meta.SetMoleculeMeta
This processor can set key/value pairs in the meta attributes of one molecule, or all molecules in a system.
It can be used to set the moltype manually.

vermouth.gmx.itp.write_molecule_itp
Writes the ITP file for a molecule, and use the ‘moltype’ meta to name the molecule.

run_system(system)

vermouth.processors.pdb_reader module

Provides a processor that reads a PDB file.

See also:

vermouth.pdb.pdb

class vermouth.processors.pdb_reader.PDBInput(filename, exclude=(), ignh=False, modelidx=0)
Bases: Processor

Reads PDB files.

72 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

filename

The filename to parse.

Type
str

exclude

A collection of residue names that should not be parsed and excluded from the final molecule(s)

Type
collections.abc.Container[str]

ignh

If True, hydrogens will be discarded from the input structure.

Type
bool

modelidx

The model number to parse/use.

Type
int

See also:

read_pdb(), PDBParser()

run_system(system)

vermouth.processors.processor module

Provides an abstract base class for processors.

class vermouth.processors.processor.Processor

Bases: object

An abstract base class for processors. Subclasses must implement a run_molecule method.

run_molecule(molecule)
Process a single molecule. Must be implemented by subclasses.

Parameters
molecule (vermouth.molecule.Molecule) – The molecule to process.

Returns
Either the provided molecule, or a brand new one.

Return type
vermouth.molecule.Molecule

run_system(system)

Process system.

Parameters
system (vermouth.system.System) – The system to process. Is modified in-place.

6.1. vermouth package 73

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Container
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.quote module

Reads quotes, and produces a random one.

class vermouth.processors.quote.Quoter(quote_file=None)
Bases: Processor

Processor that can produce random string taken from a file. Useful for e.g. quotes.

Parameters
quote_file (pathlib.Path or str) – The path of the file containing the strings. Must con-
tain at least one line.

run_system(system)

Logs a random line from the file passed at initialization.

Parameters
system – Not used

Return type
None

vermouth.processors.quote.read_quote_file(filehandle)
Iterates over filehandle, and yields all strings that are not empty.

Parameters
filehandle (collections.abc.Iterable[str]) – A file opened for reading.

Yields
str – All stripped elements of filehandle that are not empty.

vermouth.processors.rename_modified_residues module

Provides a processor that renames residues based on their current residue names and identified modifications, such as
PTMs.

class vermouth.processors.rename_modified_residues.RenameModifiedResidues

Bases: Processor

run_molecule(molecule)

vermouth.processors.rename_modified_residues.rename_modified_residues(mol)
Renames residue names based on the current residue name, and the found modifications. The new names are
found in force_field.renamed_residues, which should be a mapping of {(rename, [modification_name,
...]): new_name}.

Parameters
mol (Molecule) – The molecule whose residue names should be changed. Is modified in-place.

74 Chapter 6. vermouth

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.repair_graph module

Provides a processor that repairs a graph based on a reference.

class vermouth.processors.repair_graph.RepairGraph(delete_unknown=False, include_graph=True)
Bases: Processor

Repairs a molecule such that it contains all atoms with appropriate atom names, as per the blocks in the system’s
force field, while taking any mutations and modification into account. These should be added as ‘mutation’ and
‘modification’ attributes to the atoms of the relevant residues.

delete_unknown

If True, removes any molecules that contain residues that are not known to the system’s force field.

Type
bool

include_graph

If True, every node in the resulting graph will have a ‘graph’ attribute containing a subgraph constructed
using the input atoms.

Type
bool

See also:

repair_graph()

run_molecule(molecule)

run_system(system)

vermouth.processors.repair_graph.get_default(dictionary, attr, default)
Functions like dict.get(), except that when attr is in dictionary and dictionary[attr] is None, it will return
default.

Parameters

• dictionary (dict)

• attr (collections.abc.Hashable)

• default

Returns
The value of dictionary[attr] if attr is in dictionary and dictionary[attr] is not None. default
otherwise.

Return type
object

vermouth.processors.repair_graph.make_reference(mol)
Takes an molecule graph (e.g. as read from a PDB file), and finds and returns the graph how it should look like,
including all matching nodes between the input graph and the references. Requires residue names to be correct.

6.1. vermouth package 75

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#object

VerMoUTH Documentation, Release 0.10.1.dev55

Notes

The match between hydrogren atoms need not be perfect. See the documentation of isomorphism.

Parameters
mol (networkx.Graph) – The graph read from e.g. a PDB file. Required node attributes:

resname
The residue name.

resid
The residue id.

chain
The chain identifier.

element
The element.

atomname
The atomname.

Returns

The constructed reference graph with the following node attributes:

resid
The residue id.

resname
The residue name.

chain
The chain identifier.

found
The residue subgraph from the PDB file.

reference
The residue subgraph used as reference.

match
A dictionary describing how the reference corresponds with the provided graph. Keys
are node indices of the reference, values are node indices of the provided graph.

Return type
networkx.Graph

vermouth.processors.repair_graph.repair_graph(molecule, reference_graph, include_graph=True)
Repairs a molecule graph produced based on the information in reference_graph. Missing atoms will be
added and atom- and residue- names will be canonicalized. Atoms not present in reference_graph will have
the attribute PTM_atom set to True.

molecule is modified in place. Missing atoms (as per reference_graph) are added, atom and residue names
are canonicalized, and PTM atoms are marked.

If include_graph is True, then the subgraph corresponding to each node is included in the node under the
“graph” attribute.

Parameters

• molecule (molecule.Molecule) – The graph read from e.g. a PDB file. Required node
attributes:

76 Chapter 6. vermouth

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph

VerMoUTH Documentation, Release 0.10.1.dev55

resname
The residue name.

resid
The residue id.

element
The element.

atomname
The atomname.

• reference_graph (networkx.Graph) – The reference graph as produced by
make_reference(). Required node attributes:

resid
The residue id.

resname
The residue name.

found
The residue subgraph from the PDB file.

reference
The residue subgraph used as reference.

match
A dictionary describing how the reference corresponds with the provided graph. Keys
are node indices of the reference, values are node indices of the provided graph.

• include_graph (bool) – Include the subgraph in the nodes.

vermouth.processors.repair_graph.repair_residue(molecule, ref_residue, include_graph)
Rebuild missing atoms and canonicalize atomnames

vermouth.processors.set_molecule_meta module

class vermouth.processors.set_molecule_meta.SetMoleculeMeta(**meta)
Bases: Processor

run_molecule(molecule)

vermouth.processors.sort_molecule_atoms module

Provides a processor that sorts atoms within molecules.

class vermouth.processors.sort_molecule_atoms.SortMoleculeAtoms(sortby_attrs=('chain', 'resid',
'resname', 'insertion_code',
'atomid'), target_attr=None)

Bases: Processor

Sort the atoms within a molecule by the attributes listed in the sortby_attrs. Optionally, new atom indices
are assigned to the node attribute target_attr.

Sorting nodes is useful because a lot of software assumes chains and residues are listed contiguously. In particular
this gets important when we add atoms — for instance missing atoms identified by vermouth.processors.
repair_graph.RepairGraph).

6.1. vermouth package 77

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#bool

VerMoUTH Documentation, Release 0.10.1.dev55

Nodes in the molecule are reordered according to the node attributes listed in sortby_attrs. The atom keys
are left identical, only the order of the nodes is changed. Optionally, the new indices can be assigned to nodes
target_attr attribute.

sortby_attrs

Nodes will be sorted by these node attributes.

Type
collections.abc.Sequence[collections.abc.Hashable]

target_attr

If not None, new indices will be assigned to this node attribute, starting with 1. It is a good idea to make
sure this attribute is also listed in sortby_attrs so that the sorting is stable.

Type
collections.abc.Hashable

run_molecule(molecule)

vermouth.processors.tune_cystein_bridges module

Provides processors that can add and remove cystein bridges.

class vermouth.processors.tune_cystein_bridges.AddCysteinBridgesThreshold(threshold, tem-
plate=[{'atomname':
'SG', 'resname':
'CYS'}], at-
tribute='position')

Bases: AddMoleculeEdgesAtDistance

Add edges corresponding to cystein bridges on a distance criterion.

The edge for a cystein bridge is an edge between two atoms that match at least one template from a list of templates
if the two ends of the edge are closer than a given distance.

Parameters

• threshold (float) – Distance in nanometers under which to consider an edge.

• template (list[dict]) – List of node templates.

class vermouth.processors.tune_cystein_bridges.RemoveCysteinBridgeEdges(template=[{'atomname':
'SG', 'resname':
'CYS'}])

Bases: Processor

Processor removing edges corresponding to cystein bridges.

The edge for a cystein bridge is an edge between two atoms that match at least one template from a list of
templates.

Parameters
template (list[dict]) – List of node templates.

run_molecule(molecule)

vermouth.processors.tune_cystein_bridges.remove_cystein_bridge_edges(molecule,
templates=[{'atomname':
'SG', 'resname': 'CYS'}])

78 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

VerMoUTH Documentation, Release 0.10.1.dev55

Remove all the edges that correspond to cystein bridges from a molecule.

Cystein bridge edges link an atom from a cystein side chain to the same atom on an other cystein. Selecting
the correct atom is done with a list of template node dictionaries. A template node dictionary functions in the
same way as node matching in links. An atom that can be involved in a cystein bridge must match at least one
of the templates of the list. The default template list selects the ‘SG’ bead of the residue ‘CYS’: [{'resname':
'CYS', 'atomname': 'SG'},].

A template is a dictionary that defines the key:value pairs that must be matched in the atoms. Values can be
instances of LinkPredicate.

Parameters

• molecule (networkx.Graph) – Molecule to modify in-place.

• templates (list[dict]) – A list of templates; selected atom must match at least one.

vermouth.processors.water_bias module

class vermouth.processors.water_bias.ComputeWaterBias(auto_bias, water_bias, idr_regions)
Bases: Processor

Processor which computes the water bias for the Martini Go and Martini IDP model.

The water bias strength is defined per secondary structure element in water_bias and assigned if auto_bias is
set to True. Using the idr_regions argument the water_bias can be changed for intrinsically disordered regions
(IDRs). The IDR bias superseeds the auto bias.

This Processor updates the system.gmx_topology_params attribute.

Subclassing

If the procedure by which to assign the water bias is to be changed this processor is best subclassed and the
assign_residue_water_bias method overwritten.

param auto_bias
apply the automatic secondary structure dependent water biasing

type auto_bias
bool

param water_bias
a dict of secondary structure codes and epsilon value for the water bias in kJ/mol

type water_bias
dict[str, float]

param idr_regions
regions defining the IDRs

param prefix
prefix of the Go virtual-site atomtypes

type prefix
str

param system
the system of the molecules is used for storing the nonbonded parameters

6.1. vermouth package 79

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

VerMoUTH Documentation, Release 0.10.1.dev55

type system
vermouth.system.System

assign_residue_water_bias(molecule, res_graph)
Assign the residue water bias for all residues with a secondary structure element or that are defined by the
region selector. Region selectors supercede the auto assignment.

Parameters

• molecule (vermouth.molecule.Molecule) – the molecule

• res_graph (vermouth.molecule.Molecule) – the residue graph of the molecule

run_molecule(molecule)
Assign water bias for a single molecule

run_system(system)

Assign the water bias of the Go model to file. Biasing is always molecule specific i.e. no two different
vermouth molecules can have the same bias.

Parameters
system (vermouth.system.System)

Module contents

Provides Processors, VerMoUTH’s work horses.

vermouth.rcsu package

Submodules

vermouth.rcsu.contact_map module

Read RCSU Go model contact maps.

vermouth.rcsu.contact_map.read_go_map(file_path)
Read a RCSU contact map from the c code as published in doi:10.5281/zenodo.3817447. The format requires
all contacts to have 18 columns and the first column to be a capital R.

Parameters
file_path (pathlib.Path) – path to the contact map file

Returns
contact as chain id, res id, chain id, res id

Return type
list(tuple)

80 Chapter 6. vermouth

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.rcsu.go_pipeline module

Wrapper of Processors defining the GoPipline.

class vermouth.rcsu.go_pipeline.GoProcessorPipline(processor_list)
Bases: Processor

Wrapping all processors for the go model.

prepare_run(system, moltype)
Things to do before running the pipeline.

run_system(system, **kwargs)

vermouth.rcsu.go_structure_bias module

Obtain the structural bias for the Go model.

class vermouth.rcsu.go_structure_bias.ComputeStructuralGoBias(contact_map, cutoff_short,
cutoff_long, go_eps, res_dist,
moltype, res_graph=None)

Bases: Processor

Generate the Go model structural bias for a system of molecules. This processor class has two main func-
tions: .contact_selector and .compute_bias. The .run_molecule function simply loops over all molecules in
the system and calls the other two functions. The computed structural bias parameters are stored in sys-
tem.gmx_topology_params and can be written out using the vermouth.gmx.write_topology function.

Subclassing

In order to customize the Go-model structural bias it is recommended to subclass this function and overwrite the
contact_selectormethod and/or the compute_biasmethod. This subclassed Processor then has to be added
to the into the martinize2 pipeline in place of the StructuralBiasWriter or as replacement in the GoPipeline.

Initialize the Processor with arguments required to setup the Go model structural bias.

param contact_map
list of contacts defined as by the chain identifier and residue index

type contact_map
list[(str, int, str, int)]

param cutoff_short
distances in nm smaller than this are ignored

type cutoff_short
float

param cutoff_long
distances in nm larger than this are ignored

type cutoff_long
float

param go_eps
epsilon value of the structural bias in kJ/mol

6.1. vermouth package 81

VerMoUTH Documentation, Release 0.10.1.dev55

type go_eps
float

param res_dist
if nodes are closer than res_dist along the residue graph they are ignored; this is similar to se-
quence distance but takes into account disulfide bridges for example

type res_dist
int

param moltype
name of the molecule to treat

type moltype
str

param res_graph
residue graph of the molecule; if None it gets generated automatically

type res_graph
vermouth.molecule.Molecule

param system
the system

type system
vermouth.system.System

param magic_number
magic number for Go contacts from the old GoVirt script.

type magic_number
float

compute_go_interaction(contacts)
Compute the epsilon value given a distance between two nodes, figure out the atomtype name and store it
in the systems attribute gmx_topology_params.

Parameters
contacts (list[(str, str, float)]) – list of node-keys and their distance

Returns
dict[frozenset(str, str) – dict of interaction parameters indexed by atomtype

Return type
float]

contact_selector(molecule)
Select all contacts from the contact map that according to their distance and graph connectivity are elegible
to form a Go bond and create exclusions between the backbone beads of those contacts.

Parameters
molecule (vermouth.molecule.Molecule)

Returns
list of node keys and distance

Return type
list[(collections.abc.Hashable, collections.abc.Hashable, float)]

run_molecule(molecule)

82 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#float

VerMoUTH Documentation, Release 0.10.1.dev55

run_system(system)

Process system.

Parameters
system (vermouth.system.System) – The system to process. Is modified in-place.

vermouth.rcsu.go_utils module

Utilities for Go model processors.

vermouth.rcsu.go_utils.get_go_type_from_attributes(molecule, prefix, **kwargs)
Find all nodes that satisfy a number of attributes specified as kwargs and have a specific atomtype prefix.

Parameters

• molecule (vermouth.molecule.Molecule)

• prefix (str) – the atom-type prefix of the Go virtual side

• kwargs – any number of attributes

Yields
str – the atom-type

Raises
KeyError – If no node can be found that matches attributes and prefix an KeyError is raised.

vermouth.rcsu.go_vs_includes module

class vermouth.rcsu.go_vs_includes.VirtualSiteCreator

Bases: Processor

Create virtual-sites for the Martini Go model implementation or the specific water biasing options.

See vermouth.rcsu for more details.

Every molecule must have a moltype name under the “moltype” key of the molecule meta.

See also:

NameMolType
Assign molecule type names to the molecules in a system.

add_virtual_sites()

add_virtual_sites(molecule, prefix, backbone='BB', atomname='CA', charge=0)
Add the virtual sites for GoMartini in the molecule.

One virtual site is added per backbone bead of the the Martini protein. Each virtual site copies the resid,
resname, and chain of the backbone bead. It also copies the reference to the position array, so the virtual
site position follows if the backbone bead is translated. The virtual sites are added after all the other atoms
of the molecule, each in its own charge group, with “CA” as atomname, and a charge of 0. The atomname
and charge can be set with the atomname and charge argument, respectively.

The bead type of the virtual sites is names “<prefix>_<resid>”. Where prefix is provided as an argument
of the function, and is expected to be the molecule type name.

Parameters

6.1. vermouth package 83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError

VerMoUTH Documentation, Release 0.10.1.dev55

• molecule (vermouth.molecule.Molecule) – The molecule to augment with virtual
sites.

• prefix (str) – The prefix to use for bead type names. Usually the molecule type name.

• backbone (str) – The atomname of the backbone beads.

• atomname (str) – The atomname of the virtual sites.

• charge (float or int) – The charge of the virtual sites.

run_molecule(molecule)

run_system(system)

Module contents

6.1.2 Submodules

vermouth.citation_parser module

class vermouth.citation_parser.BibTexDirector(force_field)
Bases: object

Lightweight parser for BibTex files. BibTex files in general have an assorment of entries that describe the cor-
responding sort of publication to refer to and then a number required and optional fields for the different types
of entries. A field for example would be Title giving the title of a publication. The syntax in general looks as
follows:

@<entry>{<some custom ID>, field = {<content>},
field = {<content>}}

Alternatively the {} can be replaced by quotation marks.

This parser only parses the version with {} as used by google scholar. In addition we do not check for missing
fields or invalid fields. All fields are accepted and no fields are required.

static extract_fields(entry_string)
Given an entry string without entry type and identified (i.e. ,<field_type> = {<content>}, etc.) split all the
contents and field-types using a regular expression.

Parameters
entry_string (str)

Yields
str, str – the field type, the field content

static find_entries(citation_string)
Look in a string where @ indicates the beginning of a new entry and return the indices.

Parameters
citation_string (str)

Yields
int – position of ‘@’ in citation_string

parse(lines)
Given lines from a bibtex file parse them and update the force-field citation instance variable.

84 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

parse_entry(entry_string)
Given a string describing a single entry, parse it and then update the force_field citations dict with a field
dict.

pop_entry_type(entry_string)
Given a string describing a single entry strip that entry from the string and return it. Note the string MUST
contain the @.

Parameters
entry_string (str)

Returns

• str – The entry type

• str – The shortened string

static pop_key(entry_string)
Given a string of a single entry from which the entry_type has already been removed (see pop_entry_type)
get the custom ID, strip it and return the entry_string without that ID.

Parameters
entry_string (str)

Returns
the key and the string without key

Return type
str, str

static prepare_file(lines)
Bibtex is not sensitive to line spacing so we join the line as one string. Comment characters are not allowed.

vermouth.citation_parser.citation_formatter(citation, title=False)
Very basic and minimal formatter for citations. It is adopted from basic ACS style formatting. Fields within []
are optional.

<authors> [journal] <year>; [doi]

Note that the formatter cannot format latex like syntax (e.g. a{”} for ae)

vermouth.citation_parser.read_bib(lines, force_field)

vermouth.edge_tuning module

Set of tools to add and remove edges.

vermouth.edge_tuning.add_edges_at_distance(molecule, threshold, selection_a, selection_b,
attribute='position')

Add edges within a molecule when the distance is below a threshold.

Create edges within a molecule between nodes that have an end part of ‘selection_a’, the other end part of
‘selection_b’, and a distance between the ends that is lesser than the given threshold.

All nodes that are part of ‘selection_a’ or ‘selection_b’ must have a position stored under the attribute which
key is given with the ‘attribute’ argument. That key is ‘position’ by default. If at least one node has the position
missing, then a KeyError is raised.

Parameters

• molecule (networkx.Graph) – Molecule to modify in-place.

6.1. vermouth package 85

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph

VerMoUTH Documentation, Release 0.10.1.dev55

• threshold (float) – The distance threshold under which edges will be created. The dis-
tance is expressed in nm.

• selection_a (collections.abc.Iterable[collections.abc.Hashable]) – List of
node keys from the molecule.

• selection_b (collections.abc.Iterable[collections.abc.Hashable]) – List of
node keys from the molecule.

• attribute (collections.abc.Hashable) – Name of the key in the node dictionaries
under which the coordinates are stored.

Raises
KeyError – At least one node from the selections does not have a position.

vermouth.edge_tuning.add_edges_threshold(molecules, threshold, templates_a, templates_b,
attribute='position', min_edges=0)

Add edges between two selections when under a given threshold.

Edges are added within and between the molecules and connect nodes that match the given template. Molecules
that get connected by an edge are merged and the new list of molecules is returned.

Parameters

• molecules (collections.abc.Sequence[Molecule]) – A list of molecules.

• threshold (float) – The distance threshold in nanometers under which an edge is created.

• templates_a (dict) – A list of templates; a node need to match at least one of them to be
selected at one end.

• templates_b (dict) – A list of templates; a node need to match at least one of them to be
selected at the other end.

• attribute (str) – Name of the key in the node dictionaries under which the coordinates
are stored.

• min_edges (int) – Minimum number of edges between to nodes for an edge to be added.

Returns
A new list of molecules.

Return type
list[vermouth.molecule.Molecule]

vermouth.edge_tuning.add_inter_molecule_edges(molecules, edges)
Create edges between molecules.

The function is given a list of molecules and a list of edges. Each edge is provided as a tuple of two nodes, each
node being a tuple of the molecule index in the list of molecule, and the node key in that molecule. An edge
therefore looks like ((0, 10), (2, 20)) where 1 and 2 are indices of molecules in molecules, 10 is the key
of a node from molecules[0], and 20 is the key of a node from molecules[2].

The function can create edges within a molecule if the same molecule index is given for both ends of edges.

Molecules that get linked are merged. In a merged molecule, the order of the input molecules is kept. In a list of
molecules numbered from 0 to 4, if molecules 1, 2, and 4 are merged, then the result molecules are, in order, 0,
1-2-4, 3.

Parameters

• molecules (collections.abc.Sequence[vermouth.molecule.Molecule]) – List of
molecules to link.

86 Chapter 6. vermouth

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

VerMoUTH Documentation, Release 0.10.1.dev55

• edges (collections.abc.Iterable[tuple[int, collections.abc.Hashable]])
– List of edges in a (molecule_index, node_key) format as described above. Edges
can have a third element, it is then a dictionary of attributes to be attached to the edge.

Returns
New list of molecules.

Return type
list

vermouth.edge_tuning.pairs_under_threshold(molecules, threshold, selection_a, selection_b,
attribute='position', min_edges=0)

List pairs of nodes from a selection that are closer than a threshold.

Get the distance between nodes from multiple molecules and list the pairs that are closer than the given threshold.
The molecules are given as a list of molecules, the selection is a list of nodes each of them a tuple (index of the
molecule in the list, key of the node in the molecule). The result of the function is a generator
of node pairs followed by the distance between the nodes, each node formated as in the selection.

All nodes from the selection must have a position accessible under the key given as the ‘attribute’ argument.
That key is ‘position’ by default.

With the min_edges argument, one can prevent pairs to be selected if there is a path between two nodes that is
shorter than a given number of edges.

Parameters

• molecules (collections.abc.Collection[vermouth.molecule.Molecule]) – A
list of vermouth.molecule.Molecule.

• threshold (float) – A distance threshold in nm. Pairs are return if the nodes are closer
than this threshold.

• selection_a (collections.abc.Iterable[collections.abc.Hashable]) – List of
nodes to consider at one end of the pairs. The format is described above.

• selection_b (collections.abc.Iterable[collections.abc.Hashable]) – List of
nodes to consider at the other end of the pairs. The format is described above.

• attribute (collections.abc.Hashable) – The dictionary key under which the node
positions are stored in the nodes.

• min_edges (int) – Do not select pairs that are connected by less than that number of edges.

Yields
tuple[collections.abc.Hashable, collections.abc.Hashable, float] – Pairs of node closer than the
threshold in the format described above and the distance between the nodes.

Raises
KeyError – Raised if a node from the selection does not have a position.

6.1. vermouth package 87

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError

VerMoUTH Documentation, Release 0.10.1.dev55

Notes

Symetric node pairs are not deduplicated.

vermouth.edge_tuning.prune_edges_between_selections(molecule, selection_a, selection_b)
Remove edges which have their ends part of given selections.

An edge is removed if has one end that is part of ‘selection_a’, and the other end part of ‘selection_b’.

Parameters

• molecule (networkx.Graph) – Molecule to prune in-place.

• selection_a (collections.abc.Iterable[collections.abc.Hashable]) – List of
node keys from the molecule.

• selection_b (collections.abc.Iterable[collections.abc.Hashable]) – List of
node keys from the molecule.

See also:

prune_edges_with_selectors

vermouth.edge_tuning.prune_edges_with_selectors(molecule, selector_a, selector_b=None)
Remove edges with the ends between selections defined by selectors.

An edge is removed if one of its end is part of the selection defined by ‘selector_a’, and its other end is part of the
selection defined by ‘selector_b’. A selector is a function that accept a node dictionary as argument and returns
True if the node is part of the selection.

The ‘selection_b’ argment is optional. If it is None, then ‘selector_a’ is used for the selection at both ends.

Parameters

• molecule (networkx.Graph) – Molecule to prune in-place.

• selector_a (collections.abc.Callable) – A selector for one end of the edges.

• selector_b (collections.abc.Callable) – A selector for the second end of the edges.
If set to None, then ‘selector_a’ is used for both ends.

See also:

prune_edges_between_selections

vermouth.edge_tuning.select_nodes_multi(molecules, selector)
Find the nodes that correspond to a selector among multiple molecules.

Runs a selector over multiple molecules. The selector must be a function that takes a node dictionary as argument
and returns True if the node should be selected. The selection is yielded as tuples of a molecule indice from the
molecule list input, and a key from the molecule.

Parameters

• molecule (collections.abc.Iterable[Molecule]) – A list of molecules.

• selector (collections.abc.Callable) – A selector function.

Yields
tuple[int, collections.abc.Hashable] – Molecule/key identifier for the selected nodes.

88 Chapter 6. vermouth

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.ffinput module

Read .ff files.

The FF file format describes molecule components for a given force field. It is a test format devised for quick proto-
typing.

The format is built on top of a subset of the ITP format. Describing a block is done in the same way an ITP file describes
a molecule.

class vermouth.ffinput.FFDirector(force_field)
Bases: SectionLineParser

COMMENT_CHAR = ';'

6.1. vermouth package 89

VerMoUTH Documentation, Release 0.10.1.dev55

METH_DICT = {('citations',): (<function FFDirector._pase_ff_citations>, {}),
('link',): (<function FFDirector._link>, {'context_type': 'link'}), ('link',
'!SETTLE'): (<function FFDirector._interactions>, {'context_type': 'link'}),
('link', '!angle_restraints'): (<function FFDirector._interactions>,
{'context_type': 'link'}), ('link', '!angle_restraints_z'): (<function
FFDirector._interactions>, {'context_type': 'link'}), ('link', '!angles'):
(<function FFDirector._interactions>, {'context_type': 'link'}), ('link',
'!bonds'): (<function FFDirector._interactions>, {'context_type': 'link'}),
('link', '!constraints'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', '!dihedral_restraints'): (<function FFDirector._interactions>,
{'context_type': 'link'}), ('link', '!dihedrals'): (<function
FFDirector._dih_interactions>, {'context_type': 'link'}), ('link',
'!distance_restraints'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', '!exclusions'): (<function FFDirector._interactions>,
{'context_type': 'link'}), ('link', '!impropers'): (<function
FFDirector._interactions>, {'context_type': 'link'}), ('link',
'!orientation_restraints'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', '!pairs'): (<function FFDirector._interactions>,
{'context_type': 'link'}), ('link', '!pairs_nb'): (<function
FFDirector._interactions>, {'context_type': 'link'}), ('link',
'!position_restraints'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', '!virtual_sites2'): (<function FFDirector._interactions>,
{'context_type': 'link'}), ('link', '!virtual_sites3'): (<function
FFDirector._interactions>, {'context_type': 'link'}), ('link', '!virtual_sites4'):
(<function FFDirector._interactions>, {'context_type': 'link'}), ('link',
'!virtual_sitesn'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', 'SETTLE'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', 'angle_restraints'): (<function FFDirector._interactions>,
{'context_type': 'link'}), ('link', 'angle_restraints_z'): (<function
FFDirector._interactions>, {'context_type': 'link'}), ('link', 'angles'):
(<function FFDirector._interactions>, {'context_type': 'link'}), ('link', 'atoms'):
(<function FFDirector._link_atoms>, {}), ('link', 'bonds'): (<function
FFDirector._interactions>, {'context_type': 'link'}), ('link', 'citation'):
(<function FFDirector._parse_citation>, {'context_type': 'link'}), ('link',
'constraints'): (<function FFDirector._interactions>, {'context_type': 'link'}),
('link', 'debug'): (<function FFDirector._parse_log_entry>, {'context_type':
'link'}), ('link', 'dihedral_restraints'): (<function FFDirector._interactions>,
{'context_type': 'link'}), ('link', 'dihedrals'): (<function
FFDirector._dih_interactions>, {'context_type': 'link'}), ('link',
'distance_restraints'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', 'edges'): (<function FFDirector._edges>, {'context_type':
'link', 'negate': False}), ('link', 'error'): (<function
FFDirector._parse_log_entry>, {'context_type': 'link'}), ('link', 'exclusions'):
(<function FFDirector._interactions>, {'context_type': 'link'}), ('link',
'features'): (<function FFDirector._link_features>, {'context_type': 'link'}),
('link', 'impropers'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', 'info'): (<function FFDirector._parse_log_entry>,
{'context_type': 'link'}), ('link', 'molmeta'): (<function FFDirector._link>,
{'context_type': 'molmeta'}), ('link', 'non-edges'): (<function
FFDirector._edges>, {'context_type': 'link', 'negate': True}), ('link',
'orientation_restraints'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', 'pairs'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', 'pairs_nb'): (<function FFDirector._interactions>,
{'context_type': 'block'}), ('link', 'patterns'): (<function
FFDirector._link_patterns>, {'context_type': 'link'}), ('link',
'position_restraints'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', 'virtual_sites2'): (<function FFDirector._interactions>,
{'context_type': 'link'}), ('link', 'virtual_sites3'): (<function
FFDirector._interactions>, {'context_type': 'link'}), ('link', 'virtual_sites4'):
(<function FFDirector._interactions>, {'context_type': 'link'}), ('link',
'virtual_sitesn'): (<function FFDirector._interactions>, {'context_type':
'link'}), ('link', 'warning'): (<function FFDirector._parse_log_entry>,
{'context_type': 'link'}), ('macros',): (<function SectionLineParser._macros>,
{}), ('modification',): (<function FFDirector._modification>, {}), ('modification',
'SETTLE'): (<function FFDirector._interactions>, {'context_type': 'modification'}),
('modification', 'angle_restraints'): (<function FFDirector._interactions>,
{'context_type': 'modification'}), ('modification', 'angle_restraints_z'):
(<function FFDirector._interactions>, {'context_type': 'modification'}),
('modification', 'angles'): (<function FFDirector._interactions>, {'context_type':
'modification'}), ('modification', 'atoms'): (<function
FFDirector._modification_atoms>, {}), ('modification', 'bonds'): (<function
FFDirector._interactions>, {'context_type': 'modification'}), ('modification',
'citation'): (<function FFDirector._parse_citation>, {'context_type':
'modification'}), ('modification', 'constraints'): (<function
FFDirector._interactions>, {'context_type': 'modification'}), ('modification',
'debug'): (<function FFDirector._parse_log_entry>, {'context_type':
'modification'}), ('modification', 'dihedral_restraints'): (<function
FFDirector._interactions>, {'context_type': 'modification'}), ('modification',
'dihedrals'): (<function FFDirector._dih_interactions>, {'context_type':
'modification'}), ('modification', 'distance_restraints'): (<function
FFDirector._interactions>, {'context_type': 'modification'}), ('modification',
'edges'): (<function FFDirector._edges>, {'context_type': 'modification',
'negate': False}), ('modification', 'error'): (<function
FFDirector._parse_log_entry>, {'context_type': 'modification'}), ('modification',
'exclusions'): (<function FFDirector._interactions>, {'context_type':
'modification'}), ('modification', 'features'): (<function
FFDirector._link_features>, {'context_type': 'modification'}), ('modification',
'impropers'): (<function FFDirector._interactions>, {'context_type':
'modification'}), ('modification', 'info'): (<function
FFDirector._parse_log_entry>, {'context_type': 'modification'}), ('modification',
'non-edge'): (<function FFDirector._invalid_out_of_link>, {}), ('modification',
'orientation_restraints'): (<function FFDirector._interactions>, {'context_type':
'modification'}), ('modification', 'pairs'): (<function FFDirector._interactions>,
{'context_type': 'modification'}), ('modification', 'pairs_nb'): (<function
FFDirector._interactions>, {'context_type': 'modification'}), ('modification',
'patterns'): (<function FFDirector._link_patterns>, {'context_type':
'modification'}), ('modification', 'position_restraints'): (<function
FFDirector._interactions>, {'context_type': 'modification'}), ('modification',
'virtual_sites2'): (<function FFDirector._interactions>, {'context_type':
'modification'}), ('modification', 'virtual_sites3'): (<function
FFDirector._interactions>, {'context_type': 'modification'}), ('modification',
'virtual_sites4'): (<function FFDirector._interactions>, {'context_type':
'modification'}), ('modification', 'virtual_sitesn'): (<function
FFDirector._interactions>, {'context_type': 'modification'}), ('modification',
'warning'): (<function FFDirector._parse_log_entry>, {'context_type':
'modification'}), ('moleculetype',): (<function FFDirector._block>, {}),
('moleculetype', 'SETTLE'): (<function FFDirector._interactions>, {'context_type':
'block'}), ('moleculetype', 'angle_restraints'): (<function
FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype',
'angle_restraints_z'): (<function FFDirector._interactions>, {'context_type':
'block'}), ('moleculetype', 'angles'): (<function FFDirector._interactions>,
{'context_type': 'block'}), ('moleculetype', 'atoms'): (<function
FFDirector._block_atoms>, {}), ('moleculetype', 'bonds'): (<function
FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype',
'citation'): (<function FFDirector._parse_citation>, {'context_type': 'block'}),
('moleculetype', 'constraints'): (<function FFDirector._interactions>,
{'context_type': 'block'}), ('moleculetype', 'debug'): (<function
FFDirector._parse_log_entry>, {'context_type': 'block'}), ('moleculetype',
'dihedral_restraints'): (<function FFDirector._interactions>, {'context_type':
'block'}), ('moleculetype', 'dihedrals'): (<function FFDirector._dih_interactions>,
{'context_type': 'block'}), ('moleculetype', 'distance_restraints'): (<function
FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'edges'):
(<function FFDirector._edges>, {'context_type': 'block', 'negate': False}),
('moleculetype', 'error'): (<function FFDirector._parse_log_entry>,
{'context_type': 'block'}), ('moleculetype', 'exclusions'): (<function
FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype',
'features'): (<function FFDirector._invalid_out_of_link>, {}), ('moleculetype',
'impropers'): (<function FFDirector._interactions>, {'context_type': 'block'}),
('moleculetype', 'info'): (<function FFDirector._parse_log_entry>, {'context_type':
'block'}), ('moleculetype', 'meta'): (<function FFDirector._parse_block_meta>, {}),
('moleculetype', 'non-edge'): (<function FFDirector._invalid_out_of_link>, {}),
('moleculetype', 'non-edges'): (<function FFDirector._edges>, {'context_type':
'block', 'negate': True}), ('moleculetype', 'orientation_restraints'): (<function
FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype', 'pairs'):
(<function FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype',
'pairs_nb'): (<function FFDirector._interactions>, {'context_type': 'block'}),
('moleculetype', 'patterns'): (<function FFDirector._invalid_out_of_link>, {}),
('moleculetype', 'position_restraints'): (<function FFDirector._interactions>,
{'context_type': 'block'}), ('moleculetype', 'virtual_sites2'): (<function
FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype',
'virtual_sites3'): (<function FFDirector._interactions>, {'context_type':
'block'}), ('moleculetype', 'virtual_sites4'): (<function
FFDirector._interactions>, {'context_type': 'block'}), ('moleculetype',
'virtual_sitesn'): (<function FFDirector._interactions>, {'context_type':
'block'}), ('moleculetype', 'warning'): (<function FFDirector._parse_log_entry>,
{'context_type': 'block'}), ('variables',): (<function FFDirector._variables>,
{})}

90 Chapter 6. vermouth

VerMoUTH Documentation, Release 0.10.1.dev55

A dict of all known parser methods, mapping section names to the function to be called and the associated
keyword arguments.

finalize_section(previous_section, ended_section)
Called once a section is finished. It appends the current_links list to the links and update the block dictionary
with current_block. Thereby it finishes the reading a given section.

Parameters

• previous_section (list[str]) – The last parsed section.

• ended_section (list[str]) – The sections that have been ended.

get_context(context_type='')

has_context()

interactions_natoms = {'SETTLE': 1, 'angle_restraints': 4, 'angle_restraints_z':
2, 'angles': 3, 'bonds': 2, 'constraints': 2, 'dihedral_restraints': 4,
'dihedrals': 4, 'distance_restraints': 2, 'impropers': 4,
'orientation_restraints': 2, 'pairs': 2, 'pairs_nb': 2, 'position_restraints':
1, 'virtual_sites2': 3, 'virtual_sites3': 4, 'virtual_sites4': 5}

parse_header(line, lineno=0)
Parses a section header with line number lineno. Sets vermouth.parser_utils.SectionLineParser.
section when applicable. Does not check whether line is a valid section header.

Parameters

• line (str)

• lineno (str)

Returns
The result of calling finalize_section(), which is called if a section ends.

Return type
object

Raises
KeyError – If the section header is unknown.

vermouth.ffinput.read_ff(lines, force_field)

vermouth.file_writer module

Provides the DeferredFileWriter, which allow writing of files without affecting existing files, until it is clear the written
changes are correct.

class vermouth.file_writer.DeferredFileWriter(*args, **kwargs)
Bases: object

A singleton class/object that is intended to prevent writing output to files that is invalid, due to e.g. warnings
further down the pipeline.

If this class is used to open a file for writing, a temporary file is created and returned instead. Once it’s clear the
output produced is valid the write()method can be used to finalize the written changes by moving them to their
intended destination. If a file with that name already exists it is backed up according to the Gromacs scheme.

6.1. vermouth package 91

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#object

VerMoUTH Documentation, Release 0.10.1.dev55

close()

Remove all produced temporary files.

open(filename, mode='r', *args, **kwargs)
If mode is either ‘w’ or ‘a’, opens and returns a handle to a temporary file. If mode is ‘r’ opens and returns
a handle to the file specified.

Once write() is called the changes written to all files opened this way are propagated to their final desti-
nation.

Parameters

• filename (os.PathLike) – The final name of the file to be opened.

• mode (str) – The mode in which the file is to be opened.

• *args (collections.abc.Iterable) – Passed to os.fdopen().

• **kwargs (dict) – Passed to os.fdopen().

Returns
An opened file

Return type
io.IOBase

write()

Finalize writing all open files by moving the created temporary files to their final destinations.

Existing file destinations will be backed up according to the Gromacs scheme.

class vermouth.file_writer.Singleton

Bases: type

Metaclass for creating singleton objects. Taken from1.

vermouth.file_writer.deferred_open(filename, mode='r', *args, **kwargs)
If mode is either ‘w’ or ‘a’, opens and returns a handle to a temporary file. If mode is ‘r’ opens and returns a
handle to the file specified.

Once write() is called the changes written to all files opened this way are propagated to their final destination.

Parameters

• filename (os.PathLike) – The final name of the file to be opened.

• mode (str) – The mode in which the file is to be opened.

• *args (collections.abc.Iterable) – Passed to os.fdopen().

• **kwargs (dict) – Passed to os.fdopen().

Returns
An opened file

Return type
io.IOBase

1 https://stackoverflow.com/questions/50566934/why-is-this-singleton-implementation-not-thread-safe/50567397

92 Chapter 6. vermouth

https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/os.html#os.fdopen
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/os.html#os.fdopen
https://docs.python.org/3/library/io.html#io.IOBase
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/os.html#os.fdopen
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/os.html#os.fdopen
https://docs.python.org/3/library/io.html#io.IOBase
https://stackoverflow.com/questions/50566934/why-is-this-singleton-implementation-not-thread-safe/50567397

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.forcefield module

Provides a class used to describe a forcefield and all associated data.

class vermouth.forcefield.ForceField(directory=None, name=None)
Bases: object

Description of a force field.

A force field can be created empty or read from a directory. In any case, a force field must be named. If read
from a directory, the base name of the directory is used as force field name, unless the name attribute is provided.
If the force field is created empty, then name must be provided.

Parameters

• directory (str or pathlib.Path, optional) – A directory to read the force field
from.

• name (str, optional) – The name of the force field.

blocks

Type
dict

links

Type
list

modifications

Type
dict

renamed_residues

Type
dict

name

Type
str

variables

Type
dict

property features

List the features declared by the links.

Return type
set

has_feature(feature)
Test if a feature is declared by the links.

Parameters
feature (str) – The name of the feature of interest.

6.1. vermouth package 93

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

Return type
bool

read_from(directory)
Populate or update the force field from a directory.

The provided directory must contain a subdirectory with the same name as the force field.

property reference_graphs

Returns all known blocks.

Return type
dict

vermouth.forcefield.find_force_fields(directory, force_fields=None)
Read all the force fields in the given directory.

A force field is defined as a directory that contains at least one RTP file. The name of the force field is the base
name of the directory.

If the force field argument is not None, then it must be a dictionary with force field names as keys and instances
of ForceField as values. The force fields in the dictionary will be updated if force fields with the same names
are found in the directory.

Parameters

• directory (pathlib.Path or str) – The path to the directory containing the force
fields.

• force_fields (dict) – A dictionary of force fields to update.

Returns
A dictionary of force fields read or updated. Keys are force field names as strings, and values are
instances of ForceField . If a dictionary was provided as the “force_fields” argument, then the
returned dictionary is the same instance as the one provided but with updated content.

Return type
dict

vermouth.forcefield.get_native_force_field(name)
Get a force field from the distributed library knowing its name.

Parameters
name (str) – The name of the requested force field.

Return type
ForceField

Raises
KeyError – There is no force field with the requested name in the distributed library.

vermouth.forcefield.iter_force_field_files(directory, extensions=dict_keys(['.rtp', '.ff', '.bib']))
Returns a generator over the path of all the force field files in the directory.

94 Chapter 6. vermouth

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.geometry module

Geometric operations.

vermouth.geometry.angle(vector_ba, vector_bc)
Calculate the angle in radians between two vectors.

The function assumes the following situation:

B
/ \
A C

It returns the angle between BA and BC.

vermouth.geometry.dihedral(coordinates)
Calculate the dihedral angle in radians.

Parameters
coordinates (numpy.ndarray) – The coordinates of 4 points defining the dihedral angle. Each
row corresponds to a point, and each column to a dimension.

Returns
The calculated angle between -pi and +pi.

Return type
float

vermouth.geometry.dihedral_phase(coordinates)
Calculate a dihedral angle in radians with a -pi phase correction.

Parameters
coordinates (numpy.ndarray) – The coordinates of 4 points defining the dihedral angle. Each
row corresponds to a point, and each column to a dimension.

Returns
The calculated angle between -pi and +pi.

Return type
float

See also:

dihedral
Calculate a dihedral angle.

vermouth.geometry.distance_matrix(coordinates_a, coordinates_b)
Compute a distance matrix between two set of points.

6.1. vermouth package 95

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

VerMoUTH Documentation, Release 0.10.1.dev55

Notes

This function does not account for periodic boundary conditions.

Parameters

• coordinates_a (numpy.ndarray) – Coordinates of the points in the selections. Each row
must correspond to a point and each column to a dimension.

• coordinates_b (numpy.ndarray) – Coordinates of the points in the selections. Each row
must correspond to a point and each column to a dimension.

Returns
Rows correspond to the points from coordinates_a, columns correspond from coordinates_b.

Return type
numpy.ndarray

vermouth.graph_utils module

class vermouth.graph_utils.MappingGraphMatcher(*args, edge_match=None, node_match=None,
**kwargs)

Bases: GraphMatcher

semantic_feasibility(G1_node, G2_node)
Returns True if mapping G1_node to G2_node is semantically feasible. Adapted from net-
workx.algorithms.isomorphism.vf2userfunc._semantic_feasibility.

vermouth.graph_utils.add_element_attr(molecule)
Adds an element attribute to every node in molecule, based on that node’s atomname attribute.

Parameters
molecule (networkx.Graph) – The graph of which nodes should get an element attribute.

Raises
ValueError – If no element could be guessed for a node.

vermouth.graph_utils.categorical_cartesian_product(graph1, graph2, attributes=())

vermouth.graph_utils.categorical_maximum_common_subgraph(graph1, graph2, attributes=())

vermouth.graph_utils.categorical_modular_product(graph1, graph2, attributes=())

vermouth.graph_utils.collect_residues(graph, attrs=('chain', 'resid', 'resname', 'insertion_code'))
Creates groups of indices based on the node attributes with keys attrs. All nodes in graph will be part of exactly
one group.

Parameters

• graph (networkx.Graph) – The graph whose node indices should be grouped.

• attrs (Sequence) – The attribute keys that should be used to group node indices. The
associated values should be hashable.

Returns
The keys are the found node attributes, the values the associated node indices.

Return type
dict[tuple, set]

96 Chapter 6. vermouth

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/exceptions.html#ValueError
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#set

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.graph_utils.get_attrs(node, attrs)
Returns multiple values from a dictionary in order.

Parameters

• node (dict) – The dict from which items should be taken.

• attrs (collections.abc.Iterable) – The keys which values should be taken.

Returns
A tuple containing the value of every key in attrs in the same order, where missing values are
None.

Return type
tuple

vermouth.graph_utils.make_residue_graph(graph, attrs=('chain', 'resid', 'resname', 'insertion_code'))
Create a new graph based on graph, where nodes with identical attribute values for the attribute names in attrs
will be contracted into a single, coarser node. With the default arguments it will create a graph with one node
per residue. Resulting (coarse) nodes will have the same attributes as the constructing nodes, but only those that
have identical values. In addition, they’ll have attributes ‘graph’, ‘nnodes’, ‘nedges’ and ‘density’.

Parameters

• graph (networkx.Graph) – The graph to condense.

• attrs (collections.abc.Iterable[collections.abc.Hashable]) – The node at-
tributes that determine node equivalence.

Returns
The resulting coarser graph, where equivalent nodes are contracted to a single node.

Return type
networkx.Graph

vermouth.graph_utils.partition_graph(graph, partitions)
Create a new graph based on graph, where nodes are aggregated based on partitions, similar to the networkx
quotient_graph, except that it only accepts pre-made partitions, and edges are not given a ‘weight’ attribute.
Much fast than the quotient_graph, since it creates edges based on existing edges rather than trying all possible
combinations.

Parameters

• graph (networkx.Graph) – The graph to partition

• partitions (collections.abc.Iterable[collections.abc.
Iterable[collections.abc.Hashable]]) – E.g. a list of lists of node indices,
describing the partitions. Will be sorted by lowest index.

Returns
The coarser graph.

Return type
networkx.Graph

vermouth.graph_utils.rate_match(residue, bead, match)
A helper function which rates how well match describes the isomorphism between residue and bead based on
the number of matching atomnames.

Parameters

• residue (networkx.Graph) – A graph. Required node attributes:

6.1. vermouth package 97

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph

VerMoUTH Documentation, Release 0.10.1.dev55

atomname
The name of an atom.

• bead (networkx.Graph) – A subgraph of residue where the isomorphism is described
by match. Required node attributes:

atomname
The name of an atom.

Returns
The number of entries in match where the atomname in residuematches the atomname in bead.

Return type
int

vermouth.ismags module

ISMAGS Algorithm

Provides a Python implementation of the ISMAGS algorithm.1

It is capable of finding (subgraph) isomorphisms between two graphs, taking the symmetry of the subgraph into account.
In most cases the VF2 algorithm is faster (at least on small graphs) than this implementation, but in some cases there
is an exponential number of isomorphisms that are symmetrically equivalent. In that case, the ISMAGS algorithm will
provide only one solution per symmetry group.

In addition, this implementation also provides an interface to find the largest common induced subgraph2 between any
two graphs, again taking symmetry into account. Given graph and subgraph the algorithm will remove nodes from
the subgraph until subgraph is isomorphic to a subgraph of graph. Since only the symmetry of subgraph is taken into
account it is worth thinking about how you provide your graphs:

>>> graph1 = nx.path_graph(4)
>>> graph2 = nx.star_graph(3)
>>> ismags = isomorphism.ISMAGS(graph1, graph2)
>>> ismags.is_isomorphic()
False
>>> list(ismags.largest_common_subgraph())
[{1: 0, 0: 1, 2: 2}, {2: 0, 1: 1, 3: 2}]
>>> ismags2 = isomorphism.ISMAGS(graph2, graph1)
>>> list(ismags2.largest_common_subgraph())
[{1: 0, 0: 1, 2: 2},
{1: 0, 0: 1, 3: 2},
{2: 0, 0: 1, 1: 2},
{2: 0, 0: 1, 3: 2},
{3: 0, 0: 1, 1: 2},
{3: 0, 0: 1, 2: 2}]

However, when not taking symmetry into account, it doesn’t matter:

>>> list(ismags.largest_common_subgraph(symmetry=False))
[{1: 0, 0: 1, 2: 3},
{1: 0, 2: 1, 0: 3},

(continues on next page)

1 M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, M. Pickavet, “The Index-Based Subgraph Matching Algorithm with General
Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration”, PLoS One 9(5): e97896, 2014. https://doi.org/10.1371/journal.
pone.0097896

2 https://en.wikipedia.org/wiki/Maximum_common_induced_subgraph

98 Chapter 6. vermouth

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#int
https://doi.org/10.1371/journal.pone.0097896
https://doi.org/10.1371/journal.pone.0097896
https://en.wikipedia.org/wiki/Maximum_common_induced_subgraph

VerMoUTH Documentation, Release 0.10.1.dev55

(continued from previous page)

{2: 0, 1: 1, 3: 3},
{2: 0, 3: 1, 1: 3},
{1: 0, 0: 2, 2: 3},
{1: 0, 2: 2, 0: 3},
{2: 0, 1: 2, 3: 3},
{2: 0, 3: 2, 1: 3},
{1: 0, 0: 1, 2: 2},
{1: 0, 2: 1, 0: 2},
{2: 0, 1: 1, 3: 2},
{2: 0, 3: 1, 1: 2}]
>>> list(ismags2.largest_common_subgraph(symmetry=False))
[{1: 0, 0: 1, 2: 3},
{1: 0, 2: 1, 0: 3},
{2: 0, 1: 1, 3: 3},
{2: 0, 3: 1, 1: 3},
{1: 0, 0: 2, 2: 3},
{1: 0, 2: 2, 0: 3},
{2: 0, 1: 2, 3: 3},
{2: 0, 3: 2, 1: 3},
{1: 0, 0: 1, 2: 2},
{1: 0, 2: 1, 0: 2},
{2: 0, 1: 1, 3: 2},
{2: 0, 3: 1, 1: 2}]

Notes

• The current implementation works for undirected graphs only. The algorithm in general should work for directed
graphs as well though.

• Node keys for both provided graphs need to be fully orderable as well as hashable.

• Node and edge equality is assumed to be transitive: if A is equal to B, and B is equal to C, then A is equal to C.

References

class vermouth.ismags.ISMAGS(graph, subgraph, node_match=None, edge_match=None, cache=None)
Bases: object

Implements the ISMAGS subgraph matching algorith.Page 98, 1 ISMAGS stands for “Index-based Subgraph
Matching Algorithm with General Symmetries”. As the name implies, it is symmetry aware and will only gen-
erate non-symmetric isomorphisms.

6.1. vermouth package 99

https://docs.python.org/3/library/functions.html#object

VerMoUTH Documentation, Release 0.10.1.dev55

Notes

The implementation imposes additional conditions compared to the VF2 algorithm on the graphs provided and
the comparison functions (node_equality and edge_equality):

• Node keys in both graphs must be orderable as well as hashable.

• Equality must be transitive: if A is equal to B, and B is equal to C, then A must be equal to C.

graph

Type
networkx.Graph

subgraph

Type
networkx.Graph

node_equality

The function called to see if two nodes should be considered equal. It’s signature looks like this:
f(graph1: networkx.Graph, node1, graph2: networkx.Graph, node2) -> bool. node1
is a node in graph1, and node2 a node in graph2. Constructed from the argument node_match.

Type
collections.abc.Callable

edge_equality

The function called to see if two edges should be considered equal. It’s signature looks like this:
f(graph1: networkx.Graph, edge1, graph2: networkx.Graph, edge2) -> bool. edge1
is an edge in graph1, and edge2 an edge in graph2. Constructed from the argument edge_match.

Type
collections.abc.Callable

Parameters

• graph (networkx.Graph)

• subgraph (networkx.Graph)

• node_match (collections.abc.Callable or None) – Function used to deter-
mine whether two nodes are equivalent. Its signature should look like f(n1:
dict, n2: dict) -> bool, with n1 and n2 node property dicts. See also
categorical_node_match() and friends. If None, all nodes are considered equal.

• edge_match (collections.abc.Callable or None) – Function used to deter-
mine whether two edges are equivalent. Its signature should look like f(e1:
dict, e2: dict) -> bool, with e1 and e2 edge property dicts. See also
categorical_edge_match() and friends. If None, all edges are considered equal.

• cache (collections.abc.Mapping) – A cache used for caching graph symmetries.

analyze_symmetry(graph, node_partitions, edge_colors)
Find a minimal set of permutations and corresponding co-sets that describe the symmetry of subgraph .

Returns

• set[frozenset] – The found permutations. This is a set of frozenset of pairs of node
keys which can be exchanged without changing subgraph .

100 Chapter 6. vermouth

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://networkx.org/documentation/latest/reference/algorithms/generated/networkx.algorithms.isomorphism.categorical_node_match.html#networkx.algorithms.isomorphism.categorical_node_match
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://networkx.org/documentation/latest/reference/algorithms/generated/networkx.algorithms.isomorphism.categorical_edge_match.html#networkx.algorithms.isomorphism.categorical_edge_match
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping

VerMoUTH Documentation, Release 0.10.1.dev55

• dict[collections.abc.Hashable, set[collections.abc.Hashable]] – The found co-sets.
The co-sets is a dictionary of {node key: set of node keys}. Every key-value pair
describes which values can be interchanged without changing nodes less than key.

find_isomorphisms(symmetry=True)
Find all subgraph isomorphisms between subgraph <= graph .

Parameters
symmetry (bool) – Whether symmetry should be taken into account. If False, found
isomorphisms may be symmetrically equivalent.

Yields
dict – The found isomorphism mappings of {graph_node: subgraph_node}.

is_isomorphic(symmetry=False)
Returns True if graph is isomorphic to subgraph and False otherwise.

Return type
bool

isomorphisms_iter(symmetry=True)
Does the same as find_isomorphisms() if graph and subgraph have the same number of nodes.

largest_common_subgraph(symmetry=True)
Find the largest common induced subgraphs between subgraph and graph .

Parameters
symmetry (bool) – Whether symmetry should be taken into account. If False, found
largest common subgraphs may be symmetrically equivalent.

Yields
dict – The found isomorphism mappings of {graph_node: subgraph_node}.

subgraph_is_isomorphic(symmetry=False)
Returns True if a subgraph of graph is isomorphic to subgraph and False otherwise.

Return type
bool

subgraph_isomorphisms_iter(symmetry=True)
Alternative name for find_isomorphisms().

vermouth.ismags.intersect(collection_of_sets)
Given an collection of sets, returns the intersection of those sets.

Parameters
collection_of_sets (collections.abc.Collection[set]) – A collection of sets.

Returns
An intersection of all sets in collection_of_sets. Will have the same type as the item initially
taken from collection_of_sets.

Return type
set

vermouth.ismags.make_partitions(items, test)
Partitions items into sets based on the outcome of test(item1, item2). Pairs of items for which test returns
True end up in the same set.

Parameters

6.1. vermouth package 101

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set

VerMoUTH Documentation, Release 0.10.1.dev55

• items (collections.abc.Iterable[collections.abc.Hashable]) – Items to
partition

• test (collections.abc.Callable[collections.abc.Hashable,
collections.abc.Hashable]) – A function that will be called with 2 arguments,
taken from items. Should return True if those 2 items need to end up in the same partition,
and False otherwise.

Returns
A list of sets, with each set containing part of the items in items, such that all(test(*pair)
for pair in itertools.combinations(set, 2)) == True

Return type
list[set]

Notes

The function test is assumed to be transitive: if test(a, b) and test(b, c) return True, then test(a, c)
must also be True.

vermouth.ismags.partition_to_color(partitions)
Creates a dictionary with for every item in partition for every partition in partitions the index of partition in
partitions.

Parameters
partitions (collections.abc.Sequence[collections.abc.Iterable]) – As re-
turned by make_partitions().

Return type
dict[collections.abc.Hashable, int]

vermouth.log_helpers module

Provide some helper classes to allow new style brace formatting for logging and processing the type keyword.

class vermouth.log_helpers.BipolarFormatter(low_formatter, high_formatter, cutoff , logger=None)
Bases: object

A logging formatter that formats using either low_formatter or high_formatter depending on the logger’s effec-
tive loglevel.

Parameters

• low_formatter (logging.Formatter) – The formatter used if cutoff <= log-
ger.getEffectiveLevel().

• high_formatter (logging.Formatter) – The formatter used if cutoff > log-
ger.getEffectiveLevel().

• cutoff (int) – The cutoff used to decide whether the low or high formatter is used.

• logger (logging.Logger) – The logger whose effective loglevel is used. Defaults to
logging.getLogger().

class vermouth.log_helpers.CountingHandler(*args, type_attribute='type', default_type='general',
**kwargs)

Bases: NullHandler

A logging handler that counts the number of times a specific type of message is logged per loglevel.

102 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.handlers.html#logging.NullHandler

VerMoUTH Documentation, Release 0.10.1.dev55

Parameters

• type_attribute (str) – The name of the attribute carrying the type.

• default_type (str) – The type of message if none is provided.

handle(record)
Handle a log record by counting it.

number_of_counts_by(level=None, type=None)
Return the number of logging calls counted, filtered by level and type.

Parameters

• level – Only count log events of this level.

• type – Only count log events of this type.

Returns
The number of events counted.

Return type
int

class vermouth.log_helpers.Message(fmt, args, kwargs)
Bases: object

Class that defers string formatting until it’s __str__ method is called.

class vermouth.log_helpers.PassingLoggerAdapter(logger, extra=None)
Bases: LoggerAdapter

Helper class that is actually capable of chaining multiple LoggerAdapters.

addHandler(*args, **kwargs)

log(level, msg, *args, **kwargs)

property manager

Logger.manager = <logging.Manager object>

process(msg, kwargs)

class vermouth.log_helpers.StyleAdapter(logger, extra=None)
Bases: PassingLoggerAdapter

Logging adapter that encapsulate messages in Message, allowing {} style formatting.

log(level, msg, *args, **kwargs)

class vermouth.log_helpers.TypeAdapter(logger, extra=None, default_type='general')
Bases: PassingLoggerAdapter

Logging adapter that takes the type keyword argument passed to logging calls and passes adds it to the extra
attribute.

Parameters

• logger (logging.Logger or logging.LoggerAdapter) – As described in
logging.LoggerAdapter.

• extra (dict) – As described in logging.LoggerAdapter.

• default_type (str) – The type of the messages if none is given.

6.1. vermouth package 103

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

process(msg, kwargs)

vermouth.log_helpers.get_logger(name)
Convenience method that wraps a TypeAdapter around logging.getLogger(name)

Parameters
name (str) – The name of the logger to get. Passed to logging.getLogger(). Should
probably be __name__.

vermouth.log_helpers.ignore_warnings_and_count(counter, specifications, level=30)
Count the warnings after deducting the ones to ignore.

Warnings to ignore are specified as tuple (<warning-type>, <count>). The count is None if all warnings
of that type should be ignored, and the warning type is None to indicate that the count is about all not specified
types.

In case the same type is specified more than once, only the higher count is used.

vermouth.map_input module

Read force field to force field mappings.

vermouth.map_input.combine_mappings(known_mappings, partial_mapping)
Update a collection of mappings.

Add the mappings from the ‘partial_mapping’ argument into the ‘known_mappings’ collection. Both arguments
are collections of mappings similar to the output of the read_mapping_directory() function. They are dic-
tionary with 3 levels of keys: the name of the initial force field, the name of the target force field, and the name
of the block. The values in the third level dictionary are tuples of (mapping, weights, extra).

If a force field appears in ‘partial_mapping’ that is not in ‘known_mappings’, then it is added. For existing pairs
of initial and target force fields, the blocks are updated and the version in ‘partial_mapping’ is kept in priority.

Parameters

• known_mappings (dict) – Collection of mapping to update in-place.

• partial_mapping (dict) – Collection of mappings to update from.

vermouth.map_input.generate_all_self_mappings(force_fields)
Generate self mappings for a list of force fields.

Parameters
force_fields (collections.abc.Iterable) – List of instances of ForceField .

Returns
A collection of mappings formatted as the output of the read_mapping_directory() func-
tion.

Return type
dict

vermouth.map_input.generate_self_mappings(blocks)
Generate self mappings from a collection of blocks.

A self mapping is a mapping that maps a force field to itself. Applying such mapping is applying a neutral
transformation.

Parameters
blocks (dict[str, networkx.Graph]) – A dictionary of blocks with block names as keys

104 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.getLogger
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph

VerMoUTH Documentation, Release 0.10.1.dev55

and the blocks themselves as values. The blocks must be instances of networkx.Graph with
each node having an ‘atomname’ attribute.

Returns
mappings – A dictionary of mappings where the keys are the names of the blocks, and the
values are tuples like (mapping, weights, extra).

Return type
dict[str, tuple]

Raises
KeyError – Raised if a node does not have am ‘atomname’ attribute.

See also:

read_mapping_file
Read a mapping from a file.

generate_all_self_mappings
Generate self mappings for a list of force fields.

vermouth.map_input.make_mapping_object(from_block, to_block, mapping, weights, extra, name_to_index)
Convenience method for creating modern vermouth.map_parser.Mapping objects from old style mapping
information.

Parameters

• from_blocks (collections.abc.Iterable[vermouth.molecule.Block])

• to_blocks (collections.abc.Iterable[vermouth.molecule.Block])

• mapping (dict[tuple[int, str], list[tuple[int, str]]]) – Old style map-
ping describing what (resid, atomname) maps to what (resid, atomname)

• weights (dict[tuple[int, str], dict[tuple[int, str], float]]) – Old
style weights, mapping (resid, atomname), (resid, atomname) to a weight.

• extra (tuple)

• name_to_index (dict[str, dict[str, dict[str, collections.abc.
Hashable]]]) – Dict force field names, block names, atomnames to node indices.

Returns
The created mapping.

Return type
vermouth.map_parser.Mapping

vermouth.map_input.read_backmapping_file(lines, force_fields)
Partial reader for modified Backward mapping files.

Read mappings from a Backward mapping file. Not all fields are supported, only the “molecule” and the “atoms”
fields are read. If not explicitly specified, the origin force field for a molecule is assumed to be “universal”, and
the destination force field is assumed to be “martini22”.

The mapping collection is a 3 level dictionary where the first key is the name of the initial force field, the second
key is the name of the destination force field, and the third key is the name of the molecule.

Parameters

• lines (collections.abc.Iterable[str]) – Collection of lines to read.

6.1. vermouth package 105

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

• force_fields (dict[str, vermouth.forcefield.ForceField]) – Dict of known
force fields.

Return type
dict

vermouth.map_input.read_mapping_directory(directory, force_fields)
Read all the mapping files in a directory.

The resulting mapping collection is a 3-level dict where the keys are: * the name of the origin force field * the
name of the destination force field * the name of the residue

The values after these 3 levels is a mapping dict where the keys are the atom names in the origin force field and
the values are lists of names in the destination force field.

Parameters

• directory (str) – The path to the directory to search. Files with a ‘.backmap’ extension
will be read. There is no recursive search.

• force_fields (dict[str, ForceField]) – Dict of known forcefields

Returns
A collection of mappings.

Return type
dict

vermouth.map_input.read_mapping_file(lines, force_fields)

vermouth.map_parser module

Contains the Mapping object and the associated parser.

class vermouth.map_parser.Mapping(block_from, block_to, mapping, references, ff_from=None, ff_to=None,
extra=(), normalize_weights=False, type='block', names=())

Bases: object

A mapping object that describes a mapping from one resolution to another.

block_from

The graph which this Mapping object can transform.

Type
networkx.Graph

block_to

The vermouth.molecule.Block we can transform to.

Type
vermouth.molecule.Block

references

A mapping of node keys in block_to to node keys in block_from that describes which node in
blocks_from should be taken as a reference when determining node attributes for nodes in block_to.

Type
collections.abc.Mapping

106 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping

VerMoUTH Documentation, Release 0.10.1.dev55

ff_from

The forcefield of block_from .

Type
vermouth.forcefield.ForceField

ff_to

The forcefield of block_to.

Type
vermouth.forcefield.ForceField

names

The names of the mapped blocks.

Type
tuple[str]

mapping

The actual mapping that describes for every node key in block_from to what node key in block_to it
contributes to with what weight. {node_from: {node_to: weight, ...}, ...}.

Type
dict[collections.abc.Hashable, dict[collections.abc.Hashable, float]]

Note: Only nodes described in mapping will be used.

Parameters

• block_from (networkx.Graph) – As per block_from .

• block_to (vermouth.molecule.Block) – As per block_to.

• mapping (dict[collections.abc.Hashable, dict[collections.abc.
Hashable, float]]) – As per mapping.

• references (collections.abc.Mapping) – As per references.

• ff_from (vermouth.forcefield.ForceField) – As per ff_from .

• ff_to (vermouth.forcefield.ForceField) – As per ff_to.

• extra (tuple) – Extra information to be attached to block_to.

• normalize_weights (bool) – Whether the weights should be normalized such that the
sum of the weights of nodes mapping to something is 1.

• names (tuple) – As per names.

map(graph, node_match=None, edge_match=None)
Performs the partial mapping described by this object on graph. It first find the induced subgraph isomor-
phisms between graph and block_from , after which it will process the found isomorphisms according to
mapping.

None of the yielded dictionaries will refer to node keys of block_from . Instead, those will be translated
to node keys of graph based on the found isomorphisms.

Note: Only nodes described in mapping will be used in the isomorphism.

6.1. vermouth package 107

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#float
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

VerMoUTH Documentation, Release 0.10.1.dev55

Parameters

• graph (networkx.Graph) – The graph on which this partial mapping should be ap-
plied.

• node_match (collections.abc.Callable or None) – A function that should
take two dictionaries with node attributes, and return True if those nodes should be
considered equal, and False otherwise. If None, all nodes will be considered equal.

• edge_match (collections.abc.Callable or None) – A function that should
take six arguments: two graphs, and four node keys. The first two node keys will
be in the first graph and share an edge; and the last two node keys will be in the second
graph and share an edge. Should return True if a pair of edges should be considered
equal, and False otherwise. If None, all edges will be considered equal.

Yields

• dict[collections.abc.Hashable, dict[collections.abc.Hashable, float]] – the correspon-
dence between nodes in graph and nodes in block_to, with the associated weights.

• vermouth.molecule.Block – block_to.

• dict – references on which mapping has been applied.

property reverse_mapping

The reverse of mapping. {node_to: {node_from: weight, ...}, ...}

class vermouth.map_parser.MappingBuilder

Bases: object

An object that is in charge of building the arguments needed to create a Mapping object. It’s attributes describe
the information accumulated so far.

mapping

Type
collections.defaultdict

blocks_from

Type
None or vermouth.molecule.Block

blocks_to

Type
None or vermouth.molecule.Block

ff_from

Type
None or vermouth.forcefield.ForceField

ff_to

Type
None or vermouth.forcefield.ForceField

names

Type
list

108 Chapter 6. vermouth

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.html#collections.defaultdict
https://docs.python.org/3/library/stdtypes.html#list

VerMoUTH Documentation, Release 0.10.1.dev55

references

Type
dict

add_block_from(block)
Add a block to blocks_from . In addition, apply any ‘replace’ operation described by nodes on themselves:

{'atomname': 'C', 'charge': 0, 'replace': {'charge': -1}}

becomes:

{'atomname': 'C', 'charge': -1}

Parameters
block (vermouth.molecule.Block) – The block to add.

add_block_to(block)
Add a block to blocks_to.

Parameters
block (vermouth.molecule.Block) – The block to add.

add_edge_from(attrs1, attrs2, edge_attrs)
Add a single edge to blocks_from between two nodes in blocks_from described by attrs1 and attrs2.
The nodes described should not be the same.

Parameters

• attrs1 (dict[str]) – The attributes that uniquely describe a node in blocks_from

• attrs2 (dict[str]) – The attributes that uniquely describe a node in blocks_from

• edge_attrs (dict[str]) – The attributes that should be assigned to the new edge.

add_edge_to(attrs1, attrs2, edge_attrs)
Add a single edge to blocks_to between two nodes in blocks_to described by attrs1 and attrs2. The
nodes described should not be the same.

Parameters

• attrs1 (dict[str]) – The attributes that uniquely describe a node in blocks_to

• attrs2 (dict[str]) – The attributes that uniquely describe a node in blocks_to

• edge_attrs (dict[str]) – The attributes that should be assigned to the new edge.

add_mapping(attrs_from, attrs_to, weight)
Add part of a mapping to mapping. attrs_from uniquely describes a node in blocks_from and attrs_to a
node in blocks_to. Adds a mapping between those nodes with the given weight.

Parameters

• attrs_from (dict[str]) – The attributes that uniquely describe a node in
blocks_from

• attrs_to (dict[str]) – The attributes that uniquely describe a node in blocks_to

• weight (float) – The weight associated with this partial mapping.

6.1. vermouth package 109

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

VerMoUTH Documentation, Release 0.10.1.dev55

add_name(name)
Add a name to the mapping.

Parameters
name (str) – The name to add

add_node_from(attrs)
Add a single node to blocks_from .

Parameters
attrs (dict[str]) – The attributes the new node should have.

add_node_to(attrs)
Add a single node to blocks_to.

Parameters
attrs (dict[str]) – The attributes the new node should have.

add_reference(attrs_to, attrs_from)

Add a reference to references.

Parameters

• attrs_to (dict[str]) – The attributes that uniquely describe a node in blocks_to

• attrs_from (dict[str]) – The attributes that uniquely describe a node in
blocks_from

from_ff(ff_name)
Sets ff_from

Parameters
ff_name

get_mapping(type)
Instantiate a Mapping object with the information accumulated so far, and return it.

Returns
The mapping object made from the accumulated information.

Return type
Mapping

reset()

Reset the object to a clean initial state.

to_ff(ff_name)
Sets ff_to

Parameters
ff_name

class vermouth.map_parser.MappingDirector(force_fields, builder=None)
Bases: SectionLineParser

A director in charge of parsing the new mapping format. It constructs a new Mapping object by calling methods
of it’s builder (default MappingBuilder) with the correct arguments.

Parameters

• force_fields (dict[str, ForceField]) – Dict of known force fields.

• builder (MappingBuilder)

110 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

builder

The builder used to build the Mapping object. By default MappingBuilder.

identifiers

All known identifiers at this point. The key is the actual identifier, prefixed with either “to_” or “from_”,
and the values are the associated node attributes.

Type
dict[str, dict[str]]

section

The name of the section currently being processed.

Type
str

from_ff

The name of the forcefield from which this mapping describes a transfomation.

Type
str

to_ff

The name of the forcefield to which this mapping describes a transfomation.

Type
str

macros

A dictionary of known macros.

Type
dict[str, str]

COMMENT_CHAR = ';'

The character that starts a comment.

6.1. vermouth package 111

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

METH_DICT = {('block', 'from'): (<function MappingDirector._ff>, {'direction':
'from'}), ('block', 'from blocks'): (<function MappingDirector._blocks>,
{'direction': 'from', 'map_type': 'block'}), ('block', 'from edges'): (<function
MappingDirector._edges>, {'direction': 'from'}), ('block', 'from nodes'):
(<function MappingDirector._nodes>, {'direction': 'from'}), ('block', 'mapping'):
(<function MappingDirector._mapping>, {}), ('block', 'reference atoms'): (<function
MappingDirector._reference_atoms>, {}), ('block', 'to'): (<function
MappingDirector._ff>, {'direction': 'to'}), ('block', 'to blocks'): (<function
MappingDirector._blocks>, {'direction': 'to', 'map_type': 'block'}), ('block', 'to
edges'): (<function MappingDirector._edges>, {'direction': 'to'}), ('block', 'to
nodes'): (<function MappingDirector._nodes>, {'direction': 'to'}), ('macros',):
(<function SectionLineParser._macros>, {}), ('modification', 'from'): (<function
MappingDirector._ff>, {'direction': 'from'}), ('modification', 'from blocks'):
(<function MappingDirector._blocks>, {'direction': 'from', 'map_type':
'modification'}), ('modification', 'from edges'): (<function
MappingDirector._edges>, {'direction': 'from'}), ('modification', 'from nodes'):
(<function MappingDirector._nodes>, {'direction': 'from'}), ('modification',
'mapping'): (<function MappingDirector._mapping>, {}), ('modification', 'reference
atoms'): (<function MappingDirector._reference_atoms>, {}), ('modification', 'to'):
(<function MappingDirector._ff>, {'direction': 'to'}), ('modification', 'to
blocks'): (<function MappingDirector._blocks>, {'direction': 'to', 'map_type':
'modification'}), ('modification', 'to edges'): (<function MappingDirector._edges>,
{'direction': 'to'}), ('modification', 'to nodes'): (<function
MappingDirector._nodes>, {'direction': 'to'}), ('molecule',): (<function
MappingDirector._molecule>, {})}

A dict of all known parser methods, mapping section names to the function to be called and the associated
keyword arguments.

NO_FETCH_BLOCK = '!'

The character that specifies no block should be fetched automatically.

RESIDUE_ATOM_SEP = ':'

The character that separates a residue identifier from an atomname.

RESNAME_NUM_SEP = '#'

The character that separates a resname from a resnumber in shorthand block formats.

SECTION_ENDS = ['block', 'modification']

finalize_section(previous_section, ended_section)
Wraps up parsing of a single mapping.

Parameters

• previous_section (collections.abc.Sequence[str]) – The previously
parsed section.

• ended_section (collections.abc.Iterable[str]) – The just finished sections.

Returns
The accumulated mapping if the mapping is complete, None otherwise.

Return type
Mapping or None

vermouth.map_parser.parse_mapping_file(filepath, force_fields)
Parses a mapping file.

112 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

Parameters

• filepath (str) – The path of the file to parse.

• force_fields (dict[str, ForceField]) – Dict of known forcefields

Returns
A list of all mappings described in the file.

Return type
list[Mapping]

vermouth.molecule module

class vermouth.molecule.Block(incoming_graph_data=None, **attr)
Bases: Molecule

Residue topology template

Two blocks are equal if the underlying molecules are equal, and if the block names are equal.

Parameters

• incoming_graph_data – Data to initialize graph. If None (default) an empty graph is
created.

• attr – Attributes to add to graph as key=value pairs.

name

The name of the residue. Set to None if undefined.

Type
str or None

add_atom(atom)

Add an atom. atom must contain an ‘atomname’. This value will be this atom’s index.

Parameters
atom (collections.abc.Mapping) – The attributes of the atom to add. Must contain
‘atomname’

Raises
ValueError – If atom does not contain ‘atomname’

property atoms

” The atoms in the residue. Each atom is a dict with a minima a key ‘name’ for the name of the atom, and
a key ‘atype’ for the atom type. An atom can also have a key ‘charge’, ‘charge_group’, ‘comment’, or any
arbitrary key.

Return type
collections.abc.Iterator[dict]

guess_angles()

Generates all possible triplets of node indices that correspond to angles.

Yields
tuple[collections.abc.Hashable, collections.abc.Hashable, collections.abc.Hashable] –
All possible angles.

6.1. vermouth package 113

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/stdtypes.html#dict

VerMoUTH Documentation, Release 0.10.1.dev55

guess_dihedrals(angles=None)
Generates all possible quadruplets of node indices that correspond to torsion angles.

Parameters
angles (collections.abc.Iterable) – All possible angles from which to start looking
for torsion angles. Generated from guess_angles() if not provided.

Yields
tuple[collections.abc.Hashable, collections.abc.Hashable, collections.abc.Hashable, col-
lections.abc.Hashable] – All possible torsion angles.

has_dihedral_around(center)
Returns True if the block has a dihedral centered around the given bond.

Parameters
center (tuple) – The name of the two central atoms of the dihedral angle. The method
is sensitive to the order.

Return type
bool

has_improper_around(center)
Returns True if the block has an improper centered around the given bond.

Parameters
center (tuple) – The name of the two central atoms of the improper torsion. The method
is sensitive to the order.

Return type
bool

node_dict_factory

alias of OrderedDict

to_molecule(atom_offset=0, offset_resid=0, offset_charge_group=0, force_field=None,
default_attributes=None)

Converts this block to a Molecule.

Parameters

• atom_offset (int) – The number at which to start numbering the node indices.

• offset_resid (int) – The offset for the resid attributes.

• offset_charge_group (int) – The offset for the charge_group attributes.

• force_field (None or vermouth.forcefield.ForceField)

• default_attributes (collections.abc.Mapping[str]) – Attributes to set to
for nodes that are missing them.

Returns
This block as a molecule.

Return type
Molecule

class vermouth.molecule.Choice(value)
Bases: LinkPredicate

Test if an attribute is defined and in a predefined list.

114 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

Parameters
value (list) – The list of value in which to look for the attribute.

match(node, key)
Apply the comparison.

class vermouth.molecule.DeleteInteraction(atoms, atom_attrs, parameters, meta)
Bases: tuple

Create new instance of DeleteInteraction(atoms, atom_attrs, parameters, meta)

atom_attrs

Alias for field number 1

atoms

Alias for field number 0

meta

Alias for field number 3

parameters

Alias for field number 2

class vermouth.molecule.Interaction(atoms, parameters, meta)
Bases: tuple

Create new instance of Interaction(atoms, parameters, meta)

atoms

Alias for field number 0

meta

Alias for field number 2

parameters

Alias for field number 1

class vermouth.molecule.Link(incoming_graph_data=None, **attr)
Bases: Block

Template link between two residues.

Two links are equal if:

• the underlying molecules are equal

• the names are equal

• the negative edges (“non-edges”) are equal regardless of order

• the interactions to remove are the same and in the same order

• the meta variables are equal

• the pattern definitions are equal and in the same order

• the features are equals regardless of order

A link does not match if any of the non-edges match the target; their order therefore is not important. Same
goes for features that just need to be present or not. The order does matter however for interactions to remove as
removing the interactions in a different order may lead to a different set of remaining interactions.

Parameters

6.1. vermouth package 115

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

VerMoUTH Documentation, Release 0.10.1.dev55

• incoming_graph_data – Data to initialize graph. If None (default) an empty graph is
created.

• attr – Attributes to add to graph as key=value pairs.

node_dict_factory

alias of OrderedDict

same_non_edges(other)
Returns True if all the non-edges of an other link are equal to those of this link. Returns False otherwise.

class vermouth.molecule.LinkParameterEffector(keys, format_spec=None)
Bases: object

Rule to calculate an interaction parameter in a link.

This class allows to store dynamic parameters in link interactions. The value of the parameter can be computed
from the graph using the node keys given when creating the instance.

An instance of this class is first initialized with a list of node keys from the link in which it is defined. The
instance is latter called like a function, and takes as arguments a molecule and a match dictionary linking the link
nodes with the molecule ones. The format of the dictionary is expected to be {link key: molecule key}.

An instance can also have a format defined. If defined, that format will be applied to the value computed by the
_apply() method causing the output to be a string. The format is given as a ‘format_spec’ from the python
format string syntax. This format spec corresponds to what follows the column the column in string templates.
For instance, formating a floating number to have 2 decimal places will be obtained by setting format to .2f. If
no format is defined, then the calculated value is not modified.

This is a base class; it needs to be subclassed. A subclass must define an _apply()method that takes a molecule
and a list of node keys from that molecule as arguments. This method is not called directly by the user, instead
it is called by the __call__() method when the user calls the instance as a function. A subclass can also set
the n_keys_asked class attribute to the number of required keys. If the attribute is set, then the number of
keys provided when initializing a new instance will be validated against that number; else, the user can pass an
arbitrary number of keys without validation.

__call__(molecule, match)

Parameters

• molecule (Molecule) – The molecule from which to calculate the parameter value.

• match (dict) – The correspondence between the nodes from the link (keys), and the
nodes from the molecule (values).

Returns
The calculated parameter value, formatted if required.

Return type
float

_apply(molecule, keys)
Calculate the parameter value from the molecule.

116 Chapter 6. vermouth

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float

VerMoUTH Documentation, Release 0.10.1.dev55

Notes

This method must be defined in a subclass.

Parameters

• molecule (Molecule) – The molecule from which to compute the parameter value.

• keys (list) – A list of keys to use from the molecule.

Returns
The value for the parameter.

Return type
float

Parameters

• keys (list) – A list of node keys from the link. If the n_keys_asked class argument is
set, the number of keys must correspond to the value of the attribute.

• format_spec (str) – Format specification.

Raises
ValueError – Raised if the n_keys_asked class attribute is set and the number of keys does
not correspond.

n_keys_asked = None

Class attribute describing the number of keys required.

class vermouth.molecule.LinkPredicate(value)
Bases: object

Comparison criteria for node and molecule attributes in links.

When comparing an attribute from a link to a corresponding attribute from a molecule or a molecule node, the
default behavior is to use the equality as criterion for the correspondence. Some correspondence, however must
be broader for the link to be usable. Such alternative criteria are defined as link predicates.

If an attribute in a link is set to an instance of a predicate, then the correspondence is defined as the boolean
result of the match method.

This is the base class for such predicate. It must be subclassed, and subclasses must define a match() method
that takes a dictionary and a potential key from that dictionary as arguments.

Parameters
value – The per-instance value that serve as reference. How this value is treated depends on
the subclass.

match(node, key)
Do the comparison with the reference value.

6.1. vermouth package 117

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object

VerMoUTH Documentation, Release 0.10.1.dev55

Notes

This function must be defined by the subclasses. This docstring describe the expected format of the
method.

Parameters

• node (dict) – A dictionary of attributes in which to look up. This can be a node
dictionary of a molecule meta attribute.

• key – A potential key from the node dictionary.

Return type
bool

class vermouth.molecule.Modification(incoming_graph_data=None, **attr)
Bases: Link

A modification which describes deviations from a Block .

class vermouth.molecule.Molecule(*args, **kwargs)
Bases: Graph

Represents a molecule as per a specific force field. Consists of atoms (nodes), bonds (edges) and interactions
such as angle potentials.

Two molecules are equal if:

• the exclusion distance (nrexcl) are equal

• the force fields are equal (but may be different instances)

• the nodes are equal and in the same order

• the edges are equal (but order is not accounted for)

• the interactions are the same and in the same order within an interaction type

When comparing molecules, the order of the nodes is considered as it determines in what order atoms will
be written in the output. Same goes for the interactions within an interaction type. The order of edges is not
guaranteed anywhere in the code, and they are not writen in the output.

meta

Type
dict

nrexcl

Type
int

interactions

All the known interactions. Each item of the dictionary is a type of interaction, with the key being the name
of the kind of interaction using Gromacs itp/rtp conventions (‘bonds’, ‘angles’, . . .) and the value being
a list of all the interactions of that type in the residue. An interaction is a dict with a key ‘atoms’ under
which is stored the list of the atoms involved (referred by their name), a key ‘parameters’ under which is
stored an arbitrary list of non-atom parameters as written in a RTP file, and arbitrary keys to store custom
metadata. A given interaction can have a comment under the key ‘comment’.

Type
dict[str, list[Interaction]]

118 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

VerMoUTH Documentation, Release 0.10.1.dev55

citations

The citation keys associated with this molecule.

Type
set[str]

add_interaction(type_, atoms, parameters, meta=None)
Add an interaction of the specified type with the specified parameters involving the specified atoms.

Parameters

• type (str) – The type of interaction, such as ‘bonds’ or ‘angles’.

• atoms (collections.abc.Sequence) – The atoms that are involved in this interac-
tion. Must be in this molecule

• parameters (collections.abc.Iterable) – The parameters for this interaction.

• meta (collections.abc.Mapping) – Metadata for this interaction, such as com-
ments to be written to the output.

Raises
KeyError – If one of the atoms is not in this molecule.

add_node(*args, **kwargs)

add_or_replace_interaction(type_, atoms, parameters, meta=None, citations=None)
Adds a new interaction if it doesn’t exists yet, and replaces it otherwise. Interactions are deemed the same
if they’re the same type, and they involve the same atoms, and their meta['version'] is the same.

Parameters

• type (str) – The type of interaction, such as ‘bonds’ or ‘angles’.

• atoms (collections.abc.Sequence) – The atoms that are involved in this interac-
tion. Must be in this molecule

• parameters (collections.abc.Iterable) – The parameters for this interaction.

• meta (collections.abc.Mapping) – Metadata for this interaction, such as com-
ments to be written to the output.

• citations (set) – set of citations that apply when this link is addded to molecule

See also:

add_interaction()

property atoms

All atoms in this molecule. Alias for nodes.

copy()

Creates a copy of the molecule.

Return type
Molecule

edges_between(n_bunch1, n_bunch2, data=False)
Returns all edges in this molecule between nodes in n_bunch1 and n_bunch2.

Parameters

• n_bunch1 (Iterable) – The first bunch of node indices.

• n_bunch2 (Iterable) – The second bunch of node indices.

6.1. vermouth package 119

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

VerMoUTH Documentation, Release 0.10.1.dev55

Returns
A list of tuples of edges in this molecule. The first element of the tuple will be in n_bunch1,
the second element in n_bunch2.

Return type
list

find_atoms(**attrs)
Yields all indices of atoms that match attrs

Parameters
**attrs (collections.abc.Mapping) – The attributes and their desired values.

Yields
collections.abc.Hashable – All atom indices that match the specified attrs

property force_field

The force field the molecule is described for.

The force field is assumed to be consistent for all the molecules of a system. While it is possible to
reassign attribute Molecule._force_field, it is recommended to assign the force field at the system level as
reassigning force_field will propagate the change to all the molecules in that system.

get_interaction(type_)
Returns all interactions of type_

Parameters
type (collections.abc.Hashable) – The type which interactions should be found.

Returns
The interactions of the specified type.

Return type
list[Interaction]

iter_residues()

Returns a generator over the nodes of this molecules residues.

Return type
collections.abc.Generator

make_edges_from_interaction_type(type_)
Create edges from the interactions of a given type.

The interactions must be described so that two consecutive atoms in an interaction should be linked by an
edge. This is the case for bonds, angles, proper dihedral angles, and cmap torsions. It is not always true
for improper torsions.

Cmap are described as two consecutive proper dihedral angles. The atoms for the interaction are the 4
atoms of the first dihedral angle followed by the next atom forming the second dihedral angle with the 3
previous ones. Each pair of consecutive atoms generate an edge.

Warning: If there is no interaction of the required type, it will be silently ignored.

Parameters
type (str) – The name of the interaction type the edges should be built from.

120 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/collections.abc.html#collections.abc.Generator
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

make_edges_from_interactions()

Create edges from the interactions we know how to convert to edges.

The known interactions are bonds, angles, proper dihedral angles, cmap torsions and constraints.

merge_molecule(molecule)
Add the atoms and the interactions of a molecule at the end of this one.

Atom and residue index of the new atoms are offset to follow the last atom of this molecule.

Parameters
molecule (Molecule) – The molecule to merge at the end.

Returns
A dict mapping the node indices of the added molecule to their new indices in this molecule.

Return type
dict

node_dict_factory

alias of OrderedDict

remove_interaction(type_, atoms, version=0)
Removes the specified interaction.

Parameters

• type (str) – The type of interaction, such as ‘bonds’ or ‘angles’.

• atoms (collections.abc.Sequence) – The atoms that are involved in this interac-
tion.

• version (int) – Sometimes there can be multiple distinct interactions between the
same group of atoms. This is reflected with their version meta attribute.

Raises
KeyError – If the specified interaction could not be found

remove_matching_interaction(type_, template_interaction)
Removes any interactions that match the template.

Parameters

• type (collections.abc.Hashable) – The type of interaction to look for.

• template_interaction (Interaction)

See also:

interaction_match()

remove_node(node)
Overriding the remove_node method of networkx as we have to delete the interaction from the interactions
list separately which is not a part of the graph and hence does not get deleted.

remove_nodes_from(nodes)
Overriding the remove_nodes_from method of networkx as we have to delete the interaction from the
interactions list separately which is not a part of the graph and hence does not get deleted.

same_edges(other)
Compare the edges between this molecule and an other.

Edges are unordered and undirected, but they can have attributes.

6.1. vermouth package 121

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable

VerMoUTH Documentation, Release 0.10.1.dev55

Parameters
other (networkx.Graph) – The other molecule to compare the edges with.

Return type
bool

same_interactions(other)
Returns True if the interactions are the same.

To be equal, two interactions must share the same node key reference, the same interaction parameters,
and the same meta attributes. Empty interaction categories are ignored.

Parameters
other (Molecule)

Return type
bool

same_nodes(other, ignore_attr=())
Returns True if the nodes are the same and in the same order.

The equality criteria used for the attribute values are those of vermouth.utils.are_different().

Parameters

• other (Molecule)

• ignore_attr (collections.abc.Container) – Attribute keys that will not be
considered in the comparison.

Return type
bool

share_moltype_with(other)
Checks whether other has the same shape as this molecule.

Parameters
other (Molecule)

Returns
True iff other has the same shape as this molecule.

Return type
bool

static sort_interactions(all_interactions)
Returns keys in interactions sorted by (number_of_atoms, name). Keys with no interactions are skipped.

property sorted_nodes

subgraph(nodes)
Creates a subgraph from the molecule.

Return type
Molecule

class vermouth.molecule.NotDefinedOrNot(value)
Bases: LinkPredicate

Test if an attribute is not the reference value.

This test passes if the attribute is not defined, if it is set to None, or if its value is different from the reference.

122 Chapter 6. vermouth

https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.abc.html#collections.abc.Container
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

VerMoUTH Documentation, Release 0.10.1.dev55

Notes

If the reference is set to None, then the test does not pass if the attribute is explicitly set to None. It still passes if
the attribute is not defined.

Parameters
value – The value the attribute is tested not to be.

match(node, key)
Apply the comparison.

class vermouth.molecule.ParamAngle(keys, format_spec=None)
Bases: LinkParameterEffector

Calculate the angle in degrees between three consecutive nodes.

Parameters

• keys (list) – A list of node keys from the link. If the n_keys_asked class argument is
set, the number of keys must correspond to the value of the attribute.

• format_spec (str) – Format specification.

Raises
ValueError – Raised if the n_keys_asked class attribute is set and the number of keys does
not correspond.

n_keys_asked = 3

Class attribute describing the number of keys required.

class vermouth.molecule.ParamDihedral(keys, format_spec=None)
Bases: LinkParameterEffector

Calculate the dihedral angle in degrees defined by four nodes.

Parameters

• keys (list) – A list of node keys from the link. If the n_keys_asked class argument is
set, the number of keys must correspond to the value of the attribute.

• format_spec (str) – Format specification.

Raises
ValueError – Raised if the n_keys_asked class attribute is set and the number of keys does
not correspond.

n_keys_asked = 4

Class attribute describing the number of keys required.

class vermouth.molecule.ParamDihedralPhase(keys, format_spec=None)
Bases: LinkParameterEffector

Calculate the dihedral angle in degrees defined by four nodes shifted by -180 degrees.

Parameters

• keys (list) – A list of node keys from the link. If the n_keys_asked class argument is
set, the number of keys must correspond to the value of the attribute.

• format_spec (str) – Format specification.

Raises
ValueError – Raised if the n_keys_asked class attribute is set and the number of keys does
not correspond.

6.1. vermouth package 123

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

VerMoUTH Documentation, Release 0.10.1.dev55

n_keys_asked = 4

Class attribute describing the number of keys required.

class vermouth.molecule.ParamDistance(keys, format_spec=None)
Bases: LinkParameterEffector

Calculate the distance between a pair of nodes.

Parameters

• keys (list) – A list of node keys from the link. If the n_keys_asked class argument is
set, the number of keys must correspond to the value of the attribute.

• format_spec (str) – Format specification.

Raises
ValueError – Raised if the n_keys_asked class attribute is set and the number of keys does
not correspond.

n_keys_asked = 2

Class attribute describing the number of keys required.

vermouth.molecule.attributes_match(attributes, template_attributes, ignore_keys=())
Compare a dict of attributes from a molecule with one from a link.

Returns True if the attributes from the link match the ones from the molecule; returns False otherwise. The
attributes from a link match with those of a molecule if all the individual attribute from the link match the
corresponding ones in the molecule. In the simplest case, these attribute match if their values are equal. If the
value of the link attribute is an instance of LinkPredicate, then the attributes match if the match method of
the predicate returns True.

Parameters

• attributes (dict) – Attributes from the molecule.

• template_attributes (dict) – Attributes from the link.

• ignore_keys (list) – List of keys to ignore from ‘template_attributes’.

Return type
bool

vermouth.molecule.interaction_match(molecule, interaction, template_interaction)
Compare an interaction with a template interaction or interaction to delete.

An instance of Interaction matches a template instance of the same class or of DeleteInteraction if, at
the minimum, it involves the same atoms in the same order. If the template defines parameters, then they have
to match as well. In the case of of a DeleteInteraction, atoms may have attributes as well, then they have to
match with the attributes of the corresponding atoms in the molecule.

Parameters

• molecule (networkx.Graph) – The molecule that contains the interaction.

• interaction (Interaction) – The interaction in the molecule.

• template_interaction (Interaction or DeleteInteraction) – The template to
match with the interaction.

Return type
bool

124 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://networkx.org/documentation/latest/reference/classes/graph.html#networkx.Graph
https://docs.python.org/3/library/functions.html#bool

VerMoUTH Documentation, Release 0.10.1.dev55

See also:

attributes_match

vermouth.parser_utils module

Helper functions for parsers

class vermouth.parser_utils.LineParser

Bases: object

Class that describes a parser object that parses a file line by line. Subclasses will probably want to override the
methods dispatch(), parse_line(), and/or finalize():

• dispatch() is called for every line and should return the function that should be used to parse that line.

• parse_line() is called by the default implementation of dispatch() for every line.

• finalize() is called at the end of the file.

COMMENT_CHAR = '#'

dispatch(line)
Finds the correct method to parse line. Always returns parse_line().

finalize(lineno=0)
Wraps up. Is called at the end of the file.

parse(file_handle)
Reads lines from file_handle, and calls dispatch() to find which method to call to do the actual parsing.
Yields the result of that call, if it’s not None. At the end, calls finalize(), and yields its results, iff it’s
not None.

Parameters
file_handle (collections.abc.Iterable[str]) – The data to parse. Should pro-
duce lines of data.

Yields
object – The results of dispatching to parsing methods, and of finalize().

parse_line(line, lineno)
Does nothing and should be overridden by subclasses.

class vermouth.parser_utils.SectionLineParser(*args, **kwargs)
Bases: LineParser

Baseclass for all parsers that have to parse file formats that are based on sections. Parses the macros section.
Subclasses will probably want to override finalize() and/or finalize_section().

finalize_section() is called with the previous section whenever a section ends.

section

The current section.

Type
list[str]

macros

A set of subsitution rules as parsed from a macros section.

6.1. vermouth package 125

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

Type
dict[str, str]

METH_DICT = {('macros',): (<function SectionLineParser._macros>, {})}

A dict of all known parser methods, mapping section names to the function to be called and the associated
keyword arguments.

dispatch(line)
Looks at line to see what kind of line it is, and returns either parse_header() if line is a section header
or parse_section() otherwise. Calls is_section_header() to see whether line is a section header
or not.

Parameters
line (str)

Returns
The method that should be used to parse line.

Return type
collections.abc.Callable

finalize(lineno=0)
Called after the last line has been parsed to wrap up. Resets the instance and calls finalize_section().

Parameters
lineno (int) – The line number.

finalize_section(previous_section, ended_section)
Called once a section is finished. Currently does nothing.

Parameters

• previous_section (list[str]) – The last parsed section.

• ended_section (list[str]) – The sections that have been ended.

static is_section_header(line)

Parameters
line (str) – A line of text.

Returns
True iff line is a section header.

Return type
bool

Raises
IOError – The line starts like a section header but looks misformatted.

parse_header(line, lineno=0)
Parses a section header with line number lineno. Sets section when applicable. Does not check whether
line is a valid section header.

Parameters

• line (str)

• lineno (str)

Returns
The result of calling finalize_section(), which is called if a section ends.

126 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

Return type
object

Raises
KeyError – If the section header is unknown.

parse_section(line, lineno)
Parse line with line number lineno by looking up the section in METH_DICT and calling that method.

Parameters

• line (str)

• lineno (int)

Returns
The result returned by calling the registered method.

Return type
object

class vermouth.parser_utils.SectionParser(name, bases, attrs, **kwargs)
Bases: type

Metaclass (!) that populates the METH_DICT attribute of new classes. The contents of METH_DICT are set
by reading the _section_names attribute of all its attributes. You can conveniently set _section_names attributes
using the section_parser() decorator.

static section_parser(*names, **kwargs)

Parameters

• names (tuple[collections.abc.Hashable]) – The section names that should be
associated with the decorated function.

• kwargs (dict[str]) – The keyword arguments with which the decorated function
should be called.

vermouth.parser_utils.split_comments(line, comment_char=';')
Splits line at the first occurence of comment_char.

Parameters

• line (str)

• comment_char (str)

Returns
line before and after comment_char, respectively. If line does not contain comment_char, the
second element will be an empty string.

Return type
tuple[str, str]

6.1. vermouth package 127

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/collections.abc.html#collections.abc.Hashable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.selectors module

Provides helper function for selecting part of a system, e.g. all proteins, or protein backbones.

vermouth.selectors.filter_minimal(molecule, selector)
Yield the atom keys that match the selector.

The selector must be a function that accepts an atom as a argument. The atom is passed as a node attribute
dictionary. The selector must return True for atoms to keep in the selection.

The function can be used to build a subgraph that only contains the selection:

selection = molecule.subgraph(
filter_minimal(molecule, selector_function)

)

Parameters

• molecule (Molecule)

• selector (collections.abc.Callable)

Yields
collections.abc.Hashable – Keys of the atoms that match the selection.

vermouth.selectors.is_protein(molecule)
Return True if all the residues in the molecule are protein residues.

The function tests if the residue name of all the atoms in the input molecule are in PROTEIN_RESIDUES.

Parameters
molecule (Molecule) – The molecule to test.

Return type
bool

vermouth.selectors.proto_multi_templates(node, templates, ignore_keys=())
Return True is the node matched one of the templates.

Parameters

• node (dict) – The atom/node to consider.

• templates (collections.abc.Iterable[dict]) – A list of node templates to com-
pare to the node.

• ignore_keys (collections.abc.Collection) – List of keys to ignore from the tem-
plates.

Return type
bool

See also:

vermouth.molecule.attributes_match

vermouth.selectors.proto_select_attribute_in(node, attribute, values)
Return True if the given attribute of the node is in a list of values.

To be used as a selector, the function must be wrapped in a way that it can be called without the need to explicitly
specify the ‘attribute’ and ‘values’ arguments. This can be done using functools.partial():

128 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functools.html#functools.partial

VerMoUTH Documentation, Release 0.10.1.dev55

>>> # select an atom if its name is in a given list
>>> to_keep = ['BB', 'SC1']
>>> select_name_in = functools.partial(
... proto_select_attribute_in,
... attribute='atomname',
... values=to_keep
...)
>>> select_name_in(node)

Parameters

• node (dict) – The atom/node to consider.

• attribute (str) – The key to look at in the node.

• values (list) – The values the node attribute can take for the node to be selected.

Return type
bool

vermouth.selectors.select_all(_)
Returns True for all particles.

vermouth.selectors.select_backbone(node)
Returns True if node is in a protein backbone.

vermouth.selectors.selector_has_position(atom)

Return True if the atom have a position.

An atom is considered as not having a position if: * the “position” key is not defined; * the value of “position”
is None; * the coordinates are not finite numbers.

Parameters
atom (dict)

Return type
bool

vermouth.system module

Provides a class to describe a system.

class vermouth.system.System(force_field=None)
Bases: object

A system of molecules.

molecules

The molecules in the system.

Type
list[Molecule]

add_molecule(molecule)
Add a molecule to the system.

Parameters
molecule (Molecule)

6.1. vermouth package 129

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

VerMoUTH Documentation, Release 0.10.1.dev55

copy()

Creates a copy of this system and it’s molecules.

Returns
A deep copy of this system.

Return type
System

property force_field

The forcefield used to describe the molecules in this system.

property num_particles

The total number of particles in all the molecules in this system.

vermouth.truncating_formatter module

Provides a string formatter that can not only pad strings to a specified length if they’re too short, but also truncate them
if they’re too long.

class vermouth.truncating_formatter.FormatSpec(fill, align, sign, alt, zero_padding, width, comma,
decimal, precision, type)

Bases: tuple

Create new instance of FormatSpec(fill, align, sign, alt, zero_padding, width, comma, decimal, precision, type)

align

Alias for field number 1

alt

Alias for field number 3

comma

Alias for field number 6

decimal

Alias for field number 7

fill

Alias for field number 0

precision

Alias for field number 8

sign

Alias for field number 2

type

Alias for field number 9

width

Alias for field number 5

zero_padding

Alias for field number 4

130 Chapter 6. vermouth

https://docs.python.org/3/library/stdtypes.html#tuple

VerMoUTH Documentation, Release 0.10.1.dev55

class vermouth.truncating_formatter.TruncFormatter

Bases: Formatter

Adds the ‘t’ option to the format specification mini-language at the end of the format string. If provided, the
produced formatted string will be truncated to the specified length.

format_field(value, format_spec)
Implements the ‘t’ option to truncate strings that are too long to the required width.

Parameters

• value – The object to format.

• format_spec (str) – The format_spec describing how value should be formatted

• Returns

• str – value formatted as per format_spec

format_spec_re = re.compile('(([\\s\\S])?([<>=\\^]))?([\\+\\-
])?(#)?(0)?(\\d*)?(,)?((\\.)(\\d*))?([sbcdoxXneEfFgGn%])?')

vermouth.utils module

Provides several generic utility functions

vermouth.utils.are_all_equal(iterable)
Returns True if and only if all elements in iterable are equal; and False otherwise.

Parameters
iterable (collections.abc.Iterable) – The container whose elements will be checked.

Returns
True iff all elements in iterable compare equal, False otherwise.

Return type
bool

vermouth.utils.are_different(left, right)
Return True if two values are different from one another.

Values are considered different if they do not share the same type. In case of numerical value, the comparison is
done with numpy.isclose() to account for rounding. In the context of this test, nan compares equal to itself,
which is not the default behavior.

The order of mappings (dicts) is assumed to be irrelevant, so two dictionaries are not different if the only differ-
ence is the order of the keys.

vermouth.utils.first_alpha(search_string)
Returns the first ASCII letter.

Parameters
string (str) – The string in which to look for the first ASCII letter.

Return type
str

Raises
ValueError – No ASCII letter was found in ‘search_string’.

vermouth.utils.format_atom_string(node, atomid='', chain='', resname='', resid='', atomname='')

6.1. vermouth package 131

https://docs.python.org/3/library/string.html#string.Formatter
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.utils.maxes(iterable, key=<function <lambda>>)
Analogous to max, but returns a list of all maxima.

>>> all(key(elem) == max(iterable, key=key) for elem in iterable)
True

Parameters

• iterable (collections.abc.Iterable) – The iterable for which to find all maxima.

• key (collections.abc.Callable) – This callable will be called on each element of
iterable to evaluate it to a value. Return values must support > and ==.

Returns
A list of all maximal values.

Return type
list

6.1.3 Module contents

VerMoUTH: The Very Modular Universal Transformation Helper

Provides functionality for creating MD topologies from coordinate files. Powers the CLI tool martinize2.

132 Chapter 6. vermouth

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/stdtypes.html#list

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

133

VerMoUTH Documentation, Release 0.10.1.dev55

134 Chapter 7. Indices and tables

BIBLIOGRAPHY

[Martini3] P.C.T. Souza, R. Alessandri, J. Barnoud, S. Thallmair, I. Faustino, F. Grünewald, et al., Martini 3: a general
purpose force field for coarse-grained molecular dynamics, Nat. Methods. 18 (2021) 382–388. https://doi.
org/10.1038/s41592-021-01098-3

[martinize1] de Jong, D. H., Singh, G., Bennett, W. F. D., Arnarez, C., Wassenaar, T. a, Schäfer, L. v., Periole, X.,
Tieleman, D. P., & Marrink, S. J. (2013). Improved Parameters for the Martini Coarse-Grained Protein Force
Field. Journal of Chemical Theory and Computation, 9(1), 687–697. https://doi.org/10.1021/ct300646g

[VMD] W. Humphrey, A. Dalke and K. Schulten, “VMD - Visual Molecular Dynamics”, J. Molec. Graphics,
1996, vol. 14, pp. 33-38. http://www.ks.uiuc.edu/Research/vmd/

[DSSP] • W.G. Touw, C. Baakman, J. Black, T.A.H. te Beek, E. Krieger, R.P. Joosten, et al., A series of PDB-
related databanks for everyday needs, Nucleic Acids Res. 43 (2015) D364–D368. https://doi.org/10.
1093/nar/gku1028

• W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-
bonded and geometrical features., Biopolymers. 22 (1983) 2577–637. https://doi.org/10.1002/
bip.360221211

[backward] T.A. Wassenaar, K. Pluhackova, R.A. Böckmann, S.J. Marrink, D.P. Tieleman, Going Backward: A Flex-
ible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models, J. Chem.
Theory Comput. 10 (2014) 676–690. doi:10.1021/ct400617g.

[ISMAGS] M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, M. Pickavet, The Index-Based Subgraph
Matching Algorithm with General Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph
Enumeration, PLoS One. 9 (2014) e97896. doi:10.1371/journal.pone.0097896.

135

https://doi.org/10.1038/s41592-021-01098-3
https://doi.org/10.1038/s41592-021-01098-3
https://doi.org/10.1021/ct300646g
http://www.ks.uiuc.edu/Research/vmd/
https://doi.org/10.1093/nar/gku1028
https://doi.org/10.1093/nar/gku1028
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1002/bip.360221211

VerMoUTH Documentation, Release 0.10.1.dev55

136 Bibliography

PYTHON MODULE INDEX

v
vermouth, 132
vermouth.citation_parser, 84
vermouth.dssp, 40
vermouth.dssp.dssp, 35
vermouth.edge_tuning, 85
vermouth.ffinput, 89
vermouth.file_writer, 91
vermouth.forcefield, 93
vermouth.geometry, 95
vermouth.gmx, 45
vermouth.gmx.gro, 40
vermouth.gmx.itp, 40
vermouth.gmx.itp_read, 41
vermouth.gmx.rtp, 44
vermouth.gmx.topology, 44
vermouth.graph_utils, 96
vermouth.ismags, 98
vermouth.log_helpers, 102
vermouth.map_input, 104
vermouth.map_parser, 106
vermouth.molecule, 113
vermouth.parser_utils, 125
vermouth.pdb, 51
vermouth.pdb.pdb, 45
vermouth.processors, 80
vermouth.processors.add_molecule_edges, 51
vermouth.processors.annotate_mut_mod, 53
vermouth.processors.apply_posres, 54
vermouth.processors.apply_rubber_band, 54
vermouth.processors.attach_mass, 59
vermouth.processors.average_beads, 60
vermouth.processors.canonicalize_modifications,

60
vermouth.processors.do_links, 62
vermouth.processors.do_mapping, 63
vermouth.processors.gro_reader, 68
vermouth.processors.locate_charge_dummies, 68
vermouth.processors.make_bonds, 70
vermouth.processors.merge_all_molecules, 71
vermouth.processors.merge_chains, 71
vermouth.processors.name_moltype, 72

vermouth.processors.pdb_reader, 72
vermouth.processors.processor, 73
vermouth.processors.quote, 74
vermouth.processors.rename_modified_residues,

74
vermouth.processors.repair_graph, 75
vermouth.processors.set_molecule_meta, 77
vermouth.processors.sort_molecule_atoms, 77
vermouth.processors.tune_cystein_bridges, 78
vermouth.processors.water_bias, 79
vermouth.rcsu, 84
vermouth.rcsu.contact_map, 80
vermouth.rcsu.go_pipeline, 81
vermouth.rcsu.go_structure_bias, 81
vermouth.rcsu.go_utils, 83
vermouth.rcsu.go_vs_includes, 83
vermouth.selectors, 128
vermouth.system, 129
vermouth.truncating_formatter, 130
vermouth.utils, 131

137

VerMoUTH Documentation, Release 0.10.1.dev55

138 Python Module Index

INDEX

Symbols
__call__() (vermouth.molecule.LinkParameterEffector

method), 116
_apply() (vermouth.molecule.LinkParameterEffector

method), 116

A
active_molecule (vermouth.pdb.pdb.PDBParser

attribute), 45
add_atom() (vermouth.molecule.Block method), 113
add_block_from() (ver-

mouth.map_parser.MappingBuilder method),
109

add_block_to() (ver-
mouth.map_parser.MappingBuilder method),
109

add_edge_from() (ver-
mouth.map_parser.MappingBuilder method),
109

add_edge_to() (vermouth.map_parser.MappingBuilder
method), 109

add_edges_at_distance() (in module ver-
mouth.edge_tuning), 85

add_edges_threshold() (in module ver-
mouth.edge_tuning), 86

add_element_attr() (in module ver-
mouth.graph_utils), 96

add_inter_molecule_edges() (in module ver-
mouth.edge_tuning), 86

add_interaction() (vermouth.molecule.Molecule
method), 119

add_mapping() (vermouth.map_parser.MappingBuilder
method), 109

add_molecule() (vermouth.system.System method), 129
add_name() (vermouth.map_parser.MappingBuilder

method), 109
add_node() (vermouth.molecule.Molecule method), 119
add_node_from() (ver-

mouth.map_parser.MappingBuilder method),
110

add_node_to() (vermouth.map_parser.MappingBuilder
method), 110

add_or_replace_interaction() (ver-
mouth.molecule.Molecule method), 119

add_reference() (ver-
mouth.map_parser.MappingBuilder method),
110

add_virtual_sites() (ver-
mouth.rcsu.go_vs_includes.VirtualSiteCreator
method), 83

AddCysteinBridgesThreshold (class in ver-
mouth.processors.tune_cystein_bridges),
78

addHandler() (vermouth.log_helpers.PassingLoggerAdapter
method), 103

AddMoleculeEdgesAtDistance (class in ver-
mouth.processors.add_molecule_edges),
51

align (vermouth.truncating_formatter.FormatSpec at-
tribute), 130

allow_dist (vermouth.processors.make_bonds.MakeBonds
attribute), 70

allow_names (vermouth.processors.make_bonds.MakeBonds
attribute), 70

allowed_ptms() (in module ver-
mouth.processors.canonicalize_modifications),
60

alt (vermouth.truncating_formatter.FormatSpec at-
tribute), 130

always_true() (in module ver-
mouth.processors.apply_rubber_band), 56

analyze_symmetry() (vermouth.ismags.ISMAGS
method), 100

angle() (in module vermouth.geometry), 95
anisou() (vermouth.pdb.pdb.PDBParser static method),

46
annotate_dssp() (in module vermouth.dssp.dssp), 36
annotate_modifications() (in module ver-

mouth.processors.annotate_mut_mod), 53
annotate_residues_from_sequence() (in module

vermouth.dssp.dssp), 36
AnnotateDSSP (class in vermouth.dssp.dssp), 35
AnnotateMartiniSecondaryStructures (class in

vermouth.dssp.dssp), 35

139

VerMoUTH Documentation, Release 0.10.1.dev55

AnnotateMutMod (class in ver-
mouth.processors.annotate_mut_mod), 53

AnnotateResidues (class in vermouth.dssp.dssp), 35
apply_block_mapping() (in module ver-

mouth.processors.do_mapping), 64
apply_mod_mapping() (in module ver-

mouth.processors.do_mapping), 65
apply_posres() (in module ver-

mouth.processors.apply_posres), 54
apply_rubber_band() (in module ver-

mouth.processors.apply_rubber_band), 56
ApplyPosres (class in ver-

mouth.processors.apply_posres), 54
ApplyRubberBand (class in ver-

mouth.processors.apply_rubber_band), 54
are_all_equal() (in module vermouth.utils), 131
are_connected() (in module ver-

mouth.processors.apply_rubber_band), 57
are_different() (in module vermouth.utils), 131
assign_residue_water_bias() (ver-

mouth.processors.water_bias.ComputeWaterBias
method), 80

atom() (vermouth.pdb.pdb.PDBParser method), 46
atom_attrs (vermouth.molecule.DeleteInteraction at-

tribute), 115
atom_idxs (vermouth.gmx.itp_read.ITPDirector at-

tribute), 42
atoms (vermouth.gmx.topology.NonbondParam at-

tribute), 44
atoms (vermouth.molecule.Block property), 113
atoms (vermouth.molecule.DeleteInteraction attribute),

115
atoms (vermouth.molecule.Interaction attribute), 115
atoms (vermouth.molecule.Molecule property), 119
Atomtype (class in vermouth.gmx.topology), 44
attach_mass() (in module ver-

mouth.processors.attach_mass), 59
AttachMass (class in vermouth.processors.attach_mass),

59
attribute_keep (ver-

mouth.processors.do_mapping.DoMapping
attribute), 64

attribute_must (ver-
mouth.processors.do_mapping.DoMapping
attribute), 64

attribute_stash (ver-
mouth.processors.do_mapping.DoMapping
attribute), 64

attributes_match() (in module vermouth.molecule),
124

attrs_from_node() (in module ver-
mouth.processors.do_mapping), 65

author() (vermouth.pdb.pdb.PDBParser static method),
46

B
base_constant (vermouth.processors.apply_rubber_band.ApplyRubberBand

attribute), 55
BibTexDirector (class in vermouth.citation_parser), 84
BipolarFormatter (class in vermouth.log_helpers),

102
Block (class in vermouth.molecule), 113
block_from (vermouth.map_parser.Mapping attribute),

106
block_to (vermouth.map_parser.Mapping attribute),

106
blocks (vermouth.forcefield.ForceField attribute), 93
blocks_from (vermouth.map_parser.MappingBuilder

attribute), 108
blocks_to (vermouth.map_parser.MappingBuilder at-

tribute), 108
bond_type (vermouth.processors.apply_rubber_band.ApplyRubberBand

attribute), 55
bond_type_variable (ver-

mouth.processors.apply_rubber_band.ApplyRubberBand
attribute), 55

build_connectivity_matrix() (in module ver-
mouth.processors.apply_rubber_band), 57

build_graph_mapping_collection() (in module ver-
mouth.processors.do_mapping), 65

build_pair_matrix() (in module ver-
mouth.processors.apply_rubber_band), 57

builder (vermouth.map_parser.MappingDirector
attribute), 110

C
CanonicalizeModifications (class in ver-

mouth.processors.canonicalize_modifications),
60

categorical_cartesian_product() (in module ver-
mouth.graph_utils), 96

categorical_maximum_common_subgraph() (in mod-
ule vermouth.graph_utils), 96

categorical_modular_product() (in module ver-
mouth.graph_utils), 96

caveat() (vermouth.pdb.pdb.PDBParser static method),
46

Choice (class in vermouth.molecule), 114
cispep() (vermouth.pdb.pdb.PDBParser static method),

46
citation_formatter() (in module ver-

mouth.citation_parser), 85
citations (vermouth.molecule.Molecule attribute), 118
close() (vermouth.file_writer.DeferredFileWriter

method), 91
colinear_pair() (in module ver-

mouth.processors.locate_charge_dummies),
68

140 Index

VerMoUTH Documentation, Release 0.10.1.dev55

collect_residues() (in module ver-
mouth.graph_utils), 96

combine_mappings() (in module vermouth.map_input),
104

comma (vermouth.truncating_formatter.FormatSpec at-
tribute), 130

COMMENT_CHAR (vermouth.ffinput.FFDirector attribute),
89

COMMENT_CHAR (vermouth.gmx.itp_read.ITPDirector at-
tribute), 41

COMMENT_CHAR (vermouth.map_parser.MappingDirector
attribute), 111

COMMENT_CHAR (vermouth.parser_utils.LineParser
attribute), 125

compnd() (vermouth.pdb.pdb.PDBParser static method),
46

compute_decay() (in module ver-
mouth.processors.apply_rubber_band), 58

compute_force_constants() (in module ver-
mouth.processors.apply_rubber_band), 58

compute_go_interaction() (ver-
mouth.rcsu.go_structure_bias.ComputeStructuralGoBias
method), 82

ComputeStructuralGoBias (class in ver-
mouth.rcsu.go_structure_bias), 81

ComputeWaterBias (class in ver-
mouth.processors.water_bias), 79

conect() (vermouth.pdb.pdb.PDBParser method), 46
contact_selector() (ver-

mouth.rcsu.go_structure_bias.ComputeStructuralGoBias
method), 82

convert_dssp_annotation_to_martini() (in mod-
ule vermouth.dssp.dssp), 37

convert_dssp_to_martini() (in module ver-
mouth.dssp.dssp), 37

copy() (vermouth.molecule.Molecule method), 119
copy() (vermouth.system.System method), 129
CountingHandler (class in vermouth.log_helpers), 102
cover() (in module vermouth.processors.do_mapping),

66
cryst1() (vermouth.pdb.pdb.PDBParser method), 46

D
dbref() (vermouth.pdb.pdb.PDBParser static method),

46
dbref1() (vermouth.pdb.pdb.PDBParser static method),

46
dbref2() (vermouth.pdb.pdb.PDBParser static method),

47
decay_factor (vermouth.processors.apply_rubber_band.ApplyRubberBand

attribute), 55
decay_power (vermouth.processors.apply_rubber_band.ApplyRubberBand

attribute), 55

decimal (vermouth.truncating_formatter.FormatSpec at-
tribute), 130

deferred_open() (in module vermouth.file_writer), 92
DeferredFileWriter (class in vermouth.file_writer),

91
delete_unknown (ver-

mouth.processors.do_mapping.DoMapping
attribute), 64

delete_unknown (ver-
mouth.processors.repair_graph.RepairGraph
attribute), 75

DeleteInteraction (class in vermouth.molecule), 115
dihedral() (in module vermouth.geometry), 95
dihedral_phase() (in module vermouth.geometry), 95
dispatch() (vermouth.gmx.itp_read.ITPDirector

method), 42
dispatch() (vermouth.parser_utils.LineParser method),

125
dispatch() (vermouth.parser_utils.SectionLineParser

method), 126
dispatch() (vermouth.pdb.pdb.PDBParser method), 47
distance_matrix() (in module vermouth.geometry), 95
do_average_bead() (in module ver-

mouth.processors.average_beads), 60
do_conect() (vermouth.pdb.pdb.PDBParser method),

47
do_mapping() (in module ver-

mouth.processors.do_mapping), 66
DoAverageBead (class in ver-

mouth.processors.average_beads), 60
DoLinks (class in vermouth.processors.do_links), 62
domain_criterion (ver-

mouth.processors.apply_rubber_band.ApplyRubberBand
attribute), 55

DoMapping (class in vermouth.processors.do_mapping),
63

DSSPError, 36

E
edge_equality (vermouth.ismags.ISMAGS attribute),

100
edge_matcher() (in module ver-

mouth.processors.do_mapping), 66
edges_between() (vermouth.molecule.Molecule

method), 119
end() (vermouth.pdb.pdb.PDBParser method), 47
endmdl() (vermouth.pdb.pdb.PDBParser method), 47
epsilon (vermouth.gmx.topology.Atomtype attribute), 44
epsilon (vermouth.gmx.topology.NonbondParam

attribute), 44
exclude (vermouth.processors.pdb_reader.PDBInput at-

tribute), 73
expdta() (vermouth.pdb.pdb.PDBParser static method),

47

Index 141

VerMoUTH Documentation, Release 0.10.1.dev55

extract_fields() (ver-
mouth.citation_parser.BibTexDirector static
method), 84

F
features (vermouth.forcefield.ForceField property), 93
ff_from (vermouth.map_parser.Mapping attribute), 106
ff_from (vermouth.map_parser.MappingBuilder at-

tribute), 108
ff_to (vermouth.map_parser.Mapping attribute), 107
ff_to (vermouth.map_parser.MappingBuilder attribute),

108
FFDirector (class in vermouth.ffinput), 89
fibonacci_sphere() (in module ver-

mouth.processors.locate_charge_dummies),
68

filename (vermouth.processors.pdb_reader.PDBInput
attribute), 72

fill (vermouth.truncating_formatter.FormatSpec
attribute), 130

filter_minimal() (in module vermouth.selectors), 128
finalize() (vermouth.gmx.itp_read.ITPDirector

method), 42
finalize() (vermouth.parser_utils.LineParser method),

125
finalize() (vermouth.parser_utils.SectionLineParser

method), 126
finalize() (vermouth.pdb.pdb.PDBParser method), 47
finalize_section() (vermouth.ffinput.FFDirector

method), 91
finalize_section() (ver-

mouth.gmx.itp_read.ITPDirector method),
42

finalize_section() (ver-
mouth.map_parser.MappingDirector method),
112

finalize_section() (ver-
mouth.parser_utils.SectionLineParser method),
126

find_anchor() (in module ver-
mouth.processors.locate_charge_dummies),
68

find_atoms() (vermouth.molecule.Molecule method),
120

find_entries() (ver-
mouth.citation_parser.BibTexDirector static
method), 84

find_force_fields() (in module vermouth.forcefield),
94

find_isomorphisms() (vermouth.ismags.ISMAGS
method), 101

find_ptm_atoms() (in module ver-
mouth.processors.canonicalize_modifications),
61

first_alpha() (in module vermouth.utils), 131
fix_ptm() (in module ver-

mouth.processors.canonicalize_modifications),
61

force_field (vermouth.molecule.Molecule property),
120

force_field (vermouth.system.System property), 130
ForceField (class in vermouth.forcefield), 93
format_atom_string() (in module vermouth.utils),

131
format_field() (ver-

mouth.truncating_formatter.TruncFormatter
method), 131

format_spec_re (ver-
mouth.truncating_formatter.TruncFormatter
attribute), 131

FormatSpec (class in vermouth.truncating_formatter),
130

formul() (vermouth.pdb.pdb.PDBParser static method),
47

from_ff (vermouth.map_parser.MappingDirector
attribute), 111

from_ff() (vermouth.map_parser.MappingBuilder
method), 110

fudge (vermouth.processors.make_bonds.MakeBonds at-
tribute), 70

G
generate_all_self_mappings() (in module ver-

mouth.map_input), 104
generate_self_mappings() (in module ver-

mouth.map_input), 104
get_attrs() (in module vermouth.graph_utils), 96
get_context() (vermouth.ffinput.FFDirector method),

91
get_default() (in module ver-

mouth.processors.repair_graph), 75
get_go_type_from_attributes() (in module ver-

mouth.rcsu.go_utils), 83
get_interaction() (vermouth.molecule.Molecule

method), 120
get_logger() (in module vermouth.log_helpers), 104
get_mapping() (vermouth.map_parser.MappingBuilder

method), 110
get_mod_mappings() (in module ver-

mouth.processors.do_mapping), 67
get_native_force_field() (in module ver-

mouth.forcefield), 94
get_not_none() (in module vermouth.pdb.pdb), 49
GoProcessorPipline (class in ver-

mouth.rcsu.go_pipeline), 81
graph (vermouth.ismags.ISMAGS attribute), 100
GROInput (class in vermouth.processors.gro_reader), 68

142 Index

VerMoUTH Documentation, Release 0.10.1.dev55

guess_angles() (vermouth.molecule.Block method),
113

guess_dihedrals() (vermouth.molecule.Block
method), 113

H
handle() (vermouth.log_helpers.CountingHandler

method), 103
has_context() (vermouth.ffinput.FFDirector method),

91
has_dihedral_around() (vermouth.molecule.Block

method), 114
has_feature() (vermouth.forcefield.ForceField

method), 93
has_improper_around() (vermouth.molecule.Block

method), 114
header() (vermouth.pdb.pdb.PDBParser static method),

47
helix() (vermouth.pdb.pdb.PDBParser static method),

47
het() (vermouth.pdb.pdb.PDBParser static method), 47
hetatm() (vermouth.pdb.pdb.PDBParser method), 47
hetnam() (vermouth.pdb.pdb.PDBParser static method),

48
hetsyn() (vermouth.pdb.pdb.PDBParser static method),

48

I
identifiers (vermouth.map_parser.MappingDirector

attribute), 111
identify_ptms() (in module ver-

mouth.processors.canonicalize_modifications),
61

ignh (vermouth.processors.pdb_reader.PDBInput
attribute), 73

ignore_warnings_and_count() (in module ver-
mouth.log_helpers), 104

include_graph (vermouth.processors.repair_graph.RepairGraph
attribute), 75

Interaction (class in vermouth.molecule), 115
interaction_match() (in module vermouth.molecule),

124
interactions (vermouth.molecule.Molecule attribute),

118
interactions_natoms (vermouth.ffinput.FFDirector

attribute), 91
intersect() (in module vermouth.ismags), 101
is_isomorphic() (vermouth.ismags.ISMAGS method),

101
is_pragma() (vermouth.gmx.itp_read.ITPDirector

static method), 43
is_protein() (in module vermouth.selectors), 128
is_section_header() (ver-

mouth.parser_utils.SectionLineParser static

method), 126
ISMAGS (class in vermouth.ismags), 99
isomorphisms_iter() (vermouth.ismags.ISMAGS

method), 101
iter_force_field_files() (in module ver-

mouth.forcefield), 94
iter_residues() (vermouth.molecule.Molecule

method), 120
ITPDirector (class in vermouth.gmx.itp_read), 41

J
jrnl() (vermouth.pdb.pdb.PDBParser static method), 48

K
keywds() (vermouth.pdb.pdb.PDBParser static method),

48

L
largest_common_subgraph() (ver-

mouth.ismags.ISMAGS method), 101
LineParser (class in vermouth.parser_utils), 125
Link (class in vermouth.molecule), 115
link() (vermouth.pdb.pdb.PDBParser static method), 48
LinkParameterEffector (class in vermouth.molecule),

116
LinkPredicate (class in vermouth.molecule), 117
links (vermouth.forcefield.ForceField attribute), 93
locate_all_dummies() (in module ver-

mouth.processors.locate_charge_dummies),
69

locate_dummy() (in module ver-
mouth.processors.locate_charge_dummies),
69

LocateChargeDummies (class in ver-
mouth.processors.locate_charge_dummies),
68

log() (vermouth.log_helpers.PassingLoggerAdapter
method), 103

log() (vermouth.log_helpers.StyleAdapter method), 103
lower_bound (vermouth.processors.apply_rubber_band.ApplyRubberBand

attribute), 55

M
macros (vermouth.map_parser.MappingDirector at-

tribute), 111
macros (vermouth.parser_utils.SectionLineParser

attribute), 125
make_bonds() (in module ver-

mouth.processors.make_bonds), 70
make_edges_from_interaction_type() (ver-

mouth.molecule.Molecule method), 120
make_edges_from_interactions() (ver-

mouth.molecule.Molecule method), 120

Index 143

VerMoUTH Documentation, Release 0.10.1.dev55

make_mapping_object() (in module ver-
mouth.map_input), 105

make_partitions() (in module vermouth.ismags), 101
make_reference() (in module ver-

mouth.processors.repair_graph), 75
make_residue_graph() (in module ver-

mouth.graph_utils), 97
make_same_region_criterion() (in module ver-

mouth.processors.apply_rubber_band), 58
MakeBonds (class in vermouth.processors.make_bonds),

70
manager (logging.PassingLoggerAdapter.Logger at-

tribute), 103
manager (vermouth.log_helpers.PassingLoggerAdapter

property), 103
map() (vermouth.map_parser.Mapping method), 107
Mapping (class in vermouth.map_parser), 106
mapping (vermouth.map_parser.Mapping attribute), 107
mapping (vermouth.map_parser.MappingBuilder at-

tribute), 108
MappingBuilder (class in vermouth.map_parser), 108
MappingDirector (class in vermouth.map_parser), 110
MappingGraphMatcher (class in vermouth.graph_utils),

96
mappings (vermouth.processors.do_mapping.DoMapping

attribute), 63
master() (vermouth.pdb.pdb.PDBParser static method),

48
match() (vermouth.molecule.Choice method), 115
match() (vermouth.molecule.LinkPredicate method),

117
match() (vermouth.molecule.NotDefinedOrNot method),

123
match_link() (in module ver-

mouth.processors.do_links), 62
match_order() (in module ver-

mouth.processors.do_links), 62
maxes() (in module vermouth.utils), 131
mdltyp() (vermouth.pdb.pdb.PDBParser static method),

48
merge_chains() (in module ver-

mouth.processors.merge_chains), 71
merge_molecule() (vermouth.molecule.Molecule

method), 121
MergeAllMolecules (class in ver-

mouth.processors.merge_all_molecules),
71

MergeChains (class in ver-
mouth.processors.merge_chains), 71

MergeNucleicStrands (class in ver-
mouth.processors.add_molecule_edges),
51

Message (class in vermouth.log_helpers), 103
meta (vermouth.gmx.topology.Atomtype attribute), 44

meta (vermouth.gmx.topology.NonbondParam attribute),
44

meta (vermouth.molecule.DeleteInteraction attribute),
115

meta (vermouth.molecule.Interaction attribute), 115
meta (vermouth.molecule.Molecule attribute), 118
METH_DICT (vermouth.ffinput.FFDirector attribute), 89
METH_DICT (vermouth.gmx.itp_read.ITPDirector at-

tribute), 41
METH_DICT (vermouth.map_parser.MappingDirector at-

tribute), 111
METH_DICT (vermouth.parser_utils.SectionLineParser at-

tribute), 126
minimum_force (vermouth.processors.apply_rubber_band.ApplyRubberBand

attribute), 55
model() (vermouth.pdb.pdb.PDBParser method), 48
modelidx (vermouth.pdb.pdb.PDBParser attribute), 46
modelidx (vermouth.processors.pdb_reader.PDBInput

attribute), 73
Modification (class in vermouth.molecule), 118
modification_matches() (in module ver-

mouth.processors.do_mapping), 67
modifications (vermouth.forcefield.ForceField at-

tribute), 93
modifications (vermouth.processors.annotate_mut_mod.AnnotateMutMod

attribute), 53
modres() (vermouth.pdb.pdb.PDBParser static method),

48
module

vermouth, 132
vermouth.citation_parser, 84
vermouth.dssp, 40
vermouth.dssp.dssp, 35
vermouth.edge_tuning, 85
vermouth.ffinput, 89
vermouth.file_writer, 91
vermouth.forcefield, 93
vermouth.geometry, 95
vermouth.gmx, 45
vermouth.gmx.gro, 40
vermouth.gmx.itp, 40
vermouth.gmx.itp_read, 41
vermouth.gmx.rtp, 44
vermouth.gmx.topology, 44
vermouth.graph_utils, 96
vermouth.ismags, 98
vermouth.log_helpers, 102
vermouth.map_input, 104
vermouth.map_parser, 106
vermouth.molecule, 113
vermouth.parser_utils, 125
vermouth.pdb, 51
vermouth.pdb.pdb, 45
vermouth.processors, 80

144 Index

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.add_molecule_edges,
51

vermouth.processors.annotate_mut_mod, 53
vermouth.processors.apply_posres, 54
vermouth.processors.apply_rubber_band, 54
vermouth.processors.attach_mass, 59
vermouth.processors.average_beads, 60
vermouth.processors.canonicalize_modifications,

60
vermouth.processors.do_links, 62
vermouth.processors.do_mapping, 63
vermouth.processors.gro_reader, 68
vermouth.processors.locate_charge_dummies,

68
vermouth.processors.make_bonds, 70
vermouth.processors.merge_all_molecules,

71
vermouth.processors.merge_chains, 71
vermouth.processors.name_moltype, 72
vermouth.processors.pdb_reader, 72
vermouth.processors.processor, 73
vermouth.processors.quote, 74
vermouth.processors.rename_modified_residues,

74
vermouth.processors.repair_graph, 75
vermouth.processors.set_molecule_meta, 77
vermouth.processors.sort_molecule_atoms,

77
vermouth.processors.tune_cystein_bridges,

78
vermouth.processors.water_bias, 79
vermouth.rcsu, 84
vermouth.rcsu.contact_map, 80
vermouth.rcsu.go_pipeline, 81
vermouth.rcsu.go_structure_bias, 81
vermouth.rcsu.go_utils, 83
vermouth.rcsu.go_vs_includes, 83
vermouth.selectors, 128
vermouth.system, 129
vermouth.truncating_formatter, 130
vermouth.utils, 131

Molecule (class in vermouth.molecule), 118
molecule (vermouth.gmx.topology.Atomtype attribute),

44
molecules (vermouth.pdb.pdb.PDBParser attribute), 45
molecules (vermouth.system.System attribute), 129
mtrix1() (vermouth.pdb.pdb.PDBParser static method),

48
mtrix2() (vermouth.pdb.pdb.PDBParser static method),

48
mtrix3() (vermouth.pdb.pdb.PDBParser static method),

48
mutations (vermouth.processors.annotate_mut_mod.AnnotateMutMod

attribute), 53

N
n_keys_asked (vermouth.molecule.LinkParameterEffector

attribute), 117
n_keys_asked (vermouth.molecule.ParamAngle at-

tribute), 123
n_keys_asked (vermouth.molecule.ParamDihedral at-

tribute), 123
n_keys_asked (vermouth.molecule.ParamDihedralPhase

attribute), 124
n_keys_asked (vermouth.molecule.ParamDistance at-

tribute), 124
name (vermouth.dssp.dssp.AnnotateDSSP attribute), 35
name (vermouth.dssp.dssp.AnnotateMartiniSecondaryStructures

attribute), 35
name (vermouth.dssp.dssp.AnnotateResidues attribute),

36
name (vermouth.forcefield.ForceField attribute), 93
name (vermouth.molecule.Block attribute), 113
name (vermouth.processors.merge_chains.MergeChains

attribute), 71
NameMolType (class in ver-

mouth.processors.name_moltype), 72
names (vermouth.map_parser.Mapping attribute), 107
names (vermouth.map_parser.MappingBuilder attribute),

108
NO_FETCH_BLOCK (ver-

mouth.map_parser.MappingDirector attribute),
112

node (vermouth.gmx.topology.Atomtype attribute), 44
node_dict_factory (vermouth.molecule.Block at-

tribute), 114
node_dict_factory (vermouth.molecule.Link at-

tribute), 116
node_dict_factory (vermouth.molecule.Molecule at-

tribute), 121
node_equality (vermouth.ismags.ISMAGS attribute),

100
node_matcher() (in module ver-

mouth.processors.do_mapping), 67
node_should_exist() (in module ver-

mouth.processors.do_mapping), 67
NonbondParam (class in vermouth.gmx.topology), 44
NotDefinedOrNot (class in vermouth.molecule), 122
nrexcl (vermouth.molecule.Molecule attribute), 118
num_particles (vermouth.system.System property), 130
number_of_counts_by() (ver-

mouth.log_helpers.CountingHandler method),
103

nummdl() (vermouth.pdb.pdb.PDBParser static method),
48

O
obslte() (vermouth.pdb.pdb.PDBParser static method),

48

Index 145

VerMoUTH Documentation, Release 0.10.1.dev55

open() (vermouth.file_writer.DeferredFileWriter
method), 92

origx1() (vermouth.pdb.pdb.PDBParser static method),
48

origx2() (vermouth.pdb.pdb.PDBParser static method),
48

origx3() (vermouth.pdb.pdb.PDBParser static method),
48

P
pairs_under_threshold() (in module ver-

mouth.edge_tuning), 87
ParamAngle (class in vermouth.molecule), 123
ParamDihedral (class in vermouth.molecule), 123
ParamDihedralPhase (class in vermouth.molecule), 123
ParamDistance (class in vermouth.molecule), 124
parameters (vermouth.molecule.DeleteInteraction at-

tribute), 115
parameters (vermouth.molecule.Interaction attribute),

115
parse() (vermouth.citation_parser.BibTexDirector

method), 84
parse() (vermouth.parser_utils.LineParser method),

125
parse() (vermouth.pdb.pdb.PDBParser method), 49
parse_entry() (vermouth.citation_parser.BibTexDirector

method), 84
parse_header() (vermouth.ffinput.FFDirector

method), 91
parse_header() (vermouth.gmx.itp_read.ITPDirector

method), 43
parse_header() (ver-

mouth.parser_utils.SectionLineParser method),
126

parse_line() (vermouth.parser_utils.LineParser
method), 125

parse_mapping_file() (in module ver-
mouth.map_parser), 112

parse_pragma() (vermouth.gmx.itp_read.ITPDirector
method), 43

parse_residue_spec() (in module ver-
mouth.processors.annotate_mut_mod), 53

parse_section() (ver-
mouth.parser_utils.SectionLineParser method),
127

partition_graph() (in module vermouth.graph_utils),
97

partition_to_color() (in module vermouth.ismags),
102

PassingLoggerAdapter (class in ver-
mouth.log_helpers), 103

PDBInput (class in vermouth.processors.pdb_reader), 72
PDBParser (class in vermouth.pdb.pdb), 45

pop_entry_type() (ver-
mouth.citation_parser.BibTexDirector method),
85

pop_key() (vermouth.citation_parser.BibTexDirector
static method), 85

precision (vermouth.truncating_formatter.FormatSpec
attribute), 130

prepare_file() (ver-
mouth.citation_parser.BibTexDirector static
method), 85

prepare_run() (vermouth.rcsu.go_pipeline.GoProcessorPipline
method), 81

process() (vermouth.log_helpers.PassingLoggerAdapter
method), 103

process() (vermouth.log_helpers.TypeAdapter method),
104

Processor (class in vermouth.processors.processor), 73
proto_multi_templates() (in module ver-

mouth.selectors), 128
proto_select_attribute_in() (in module ver-

mouth.selectors), 128
prune_edges_between_selections() (in module ver-

mouth.edge_tuning), 88
prune_edges_with_selectors() (in module ver-

mouth.edge_tuning), 88
ptm_node_matcher() (in module ver-

mouth.processors.canonicalize_modifications),
62

ptm_resname_match() (in module ver-
mouth.processors.do_mapping), 68

Q
Quoter (class in vermouth.processors.quote), 74

R
rate_match() (in module vermouth.graph_utils), 97
read_backmapping_file() (in module ver-

mouth.map_input), 105
read_bib() (in module vermouth.citation_parser), 85
read_dssp2() (in module vermouth.dssp.dssp), 37
read_ff() (in module vermouth.ffinput), 91
read_from() (vermouth.forcefield.ForceField method),

94
read_go_map() (in module ver-

mouth.rcsu.contact_map), 80
read_gro() (in module vermouth.gmx.gro), 40
read_itp() (in module vermouth.gmx.itp_read), 43
read_mapping_directory() (in module ver-

mouth.map_input), 106
read_mapping_file() (in module ver-

mouth.map_input), 106
read_pdb() (in module vermouth.pdb.pdb), 50
read_quote_file() (in module ver-

mouth.processors.quote), 74

146 Index

VerMoUTH Documentation, Release 0.10.1.dev55

read_rtp() (in module vermouth.gmx.rtp), 44
reference_graphs (vermouth.forcefield.ForceField

property), 94
references (vermouth.map_parser.Mapping attribute),

106
references (vermouth.map_parser.MappingBuilder at-

tribute), 108
remark() (vermouth.pdb.pdb.PDBParser static method),

49
remove_cystein_bridge_edges() (in module ver-

mouth.processors.tune_cystein_bridges), 78
remove_interaction() (vermouth.molecule.Molecule

method), 121
remove_matching_interaction() (ver-

mouth.molecule.Molecule method), 121
remove_node() (vermouth.molecule.Molecule method),

121
remove_nodes_from() (vermouth.molecule.Molecule

method), 121
RemoveCysteinBridgeEdges (class in ver-

mouth.processors.tune_cystein_bridges),
78

rename_modified_residues() (in module ver-
mouth.processors.rename_modified_residues),
74

renamed_residues (vermouth.forcefield.ForceField at-
tribute), 93

RenameModifiedResidues (class in ver-
mouth.processors.rename_modified_residues),
74

repair_graph() (in module ver-
mouth.processors.repair_graph), 76

repair_residue() (in module ver-
mouth.processors.repair_graph), 77

RepairGraph (class in ver-
mouth.processors.repair_graph), 75

res_min_dist (vermouth.processors.apply_rubber_band.ApplyRubberBand
attribute), 56

res_min_dist_variable (ver-
mouth.processors.apply_rubber_band.ApplyRubberBand
attribute), 56

reset() (vermouth.map_parser.MappingBuilder
method), 110

RESIDUE_ATOM_SEP (ver-
mouth.map_parser.MappingDirector attribute),
112

residue_matches() (in module ver-
mouth.processors.annotate_mut_mod), 53

RESNAME_NUM_SEP (ver-
mouth.map_parser.MappingDirector attribute),
112

revdat() (vermouth.pdb.pdb.PDBParser static method),
49

reverse_mapping (vermouth.map_parser.Mapping

property), 108
run_dssp() (in module vermouth.dssp.dssp), 38
run_mdtraj() (in module vermouth.dssp.dssp), 39
run_molecule() (vermouth.dssp.dssp.AnnotateDSSP

method), 35
run_molecule() (ver-

mouth.dssp.dssp.AnnotateMartiniSecondaryStructures
static method), 35

run_molecule() (ver-
mouth.dssp.dssp.AnnotateResidues method),
36

run_molecule() (ver-
mouth.processors.annotate_mut_mod.AnnotateMutMod
method), 53

run_molecule() (ver-
mouth.processors.apply_posres.ApplyPosres
method), 54

run_molecule() (ver-
mouth.processors.apply_rubber_band.ApplyRubberBand
method), 56

run_molecule() (ver-
mouth.processors.attach_mass.AttachMass
method), 59

run_molecule() (ver-
mouth.processors.average_beads.DoAverageBead
method), 60

run_molecule() (ver-
mouth.processors.canonicalize_modifications.CanonicalizeModifications
method), 60

run_molecule() (ver-
mouth.processors.do_links.DoLinks method),
62

run_molecule() (ver-
mouth.processors.do_mapping.DoMapping
method), 64

run_molecule() (ver-
mouth.processors.locate_charge_dummies.LocateChargeDummies
method), 68

run_molecule() (ver-
mouth.processors.merge_all_molecules.MergeAllMolecules
static method), 71

run_molecule() (ver-
mouth.processors.processor.Processor
method), 73

run_molecule() (ver-
mouth.processors.rename_modified_residues.RenameModifiedResidues
method), 74

run_molecule() (ver-
mouth.processors.repair_graph.RepairGraph
method), 75

run_molecule() (ver-
mouth.processors.set_molecule_meta.SetMoleculeMeta
method), 77

run_molecule() (ver-

Index 147

VerMoUTH Documentation, Release 0.10.1.dev55

mouth.processors.sort_molecule_atoms.SortMoleculeAtoms
method), 78

run_molecule() (ver-
mouth.processors.tune_cystein_bridges.RemoveCysteinBridgeEdges
method), 78

run_molecule() (ver-
mouth.processors.water_bias.ComputeWaterBias
method), 80

run_molecule() (ver-
mouth.rcsu.go_structure_bias.ComputeStructuralGoBias
method), 82

run_molecule() (ver-
mouth.rcsu.go_vs_includes.VirtualSiteCreator
method), 84

run_system() (vermouth.dssp.dssp.AnnotateResidues
method), 36

run_system() (vermouth.processors.add_molecule_edges.AddMoleculeEdgesAtDistance
method), 51

run_system() (vermouth.processors.annotate_mut_mod.AnnotateMutMod
method), 53

run_system() (vermouth.processors.do_mapping.DoMapping
method), 64

run_system() (vermouth.processors.gro_reader.GROInput
method), 68

run_system() (vermouth.processors.make_bonds.MakeBonds
method), 70

run_system() (vermouth.processors.merge_all_molecules.MergeAllMolecules
method), 71

run_system() (vermouth.processors.merge_chains.MergeChains
method), 71

run_system() (vermouth.processors.name_moltype.NameMolType
method), 72

run_system() (vermouth.processors.pdb_reader.PDBInput
method), 73

run_system() (vermouth.processors.processor.Processor
method), 73

run_system() (vermouth.processors.quote.Quoter
method), 74

run_system() (vermouth.processors.repair_graph.RepairGraph
method), 75

run_system() (vermouth.processors.water_bias.ComputeWaterBias
method), 80

run_system() (vermouth.rcsu.go_pipeline.GoProcessorPipline
method), 81

run_system() (vermouth.rcsu.go_structure_bias.ComputeStructuralGoBias
method), 82

run_system() (vermouth.rcsu.go_vs_includes.VirtualSiteCreator
method), 84

S
same_chain() (in module ver-

mouth.processors.apply_rubber_band), 59
same_edges() (vermouth.molecule.Molecule method),

121

same_interactions() (vermouth.molecule.Molecule
method), 122

same_nodes() (vermouth.molecule.Molecule method),
122

same_non_edges() (vermouth.molecule.Link method),
116

scale1() (vermouth.pdb.pdb.PDBParser static method),
49

scale2() (vermouth.pdb.pdb.PDBParser static method),
49

scale3() (vermouth.pdb.pdb.PDBParser static method),
49

section (vermouth.map_parser.MappingDirector
attribute), 111

section (vermouth.parser_utils.SectionLineParser at-
tribute), 125

SECTION_ENDS (vermouth.map_parser.MappingDirector
attribute), 112

section_parser() (ver-
mouth.parser_utils.SectionParser static
method), 127

SectionLineParser (class in vermouth.parser_utils),
125

SectionParser (class in vermouth.parser_utils), 127
select_all() (in module vermouth.selectors), 129
select_backbone() (in module vermouth.selectors),

129
select_nodes_multi() (in module ver-

mouth.edge_tuning), 88
selector (vermouth.processors.apply_rubber_band.ApplyRubberBand

attribute), 54
selector_has_position() (in module ver-

mouth.selectors), 129
self_distance_matrix() (in module ver-

mouth.processors.apply_rubber_band), 59
semantic_feasibility() (ver-

mouth.graph_utils.MappingGraphMatcher
method), 96

seqadv() (vermouth.pdb.pdb.PDBParser static method),
49

seqres() (vermouth.pdb.pdb.PDBParser static method),
49

sequence_from_residues() (in module ver-
mouth.dssp.dssp), 39

SetMoleculeMeta (class in ver-
mouth.processors.set_molecule_meta), 77

share_moltype_with() (vermouth.molecule.Molecule
method), 122

sheet() (vermouth.pdb.pdb.PDBParser static method),
49

sigma (vermouth.gmx.topology.Atomtype attribute), 44
sigma (vermouth.gmx.topology.NonbondParam at-

tribute), 44
sigma_epsilon_to_C6_C12() (in module ver-

148 Index

VerMoUTH Documentation, Release 0.10.1.dev55

mouth.gmx.topology), 44
sign (vermouth.truncating_formatter.FormatSpec

attribute), 130
Singleton (class in vermouth.file_writer), 92
site() (vermouth.pdb.pdb.PDBParser static method), 49
sort_interactions() (vermouth.molecule.Molecule

static method), 122
sortby_attrs (vermouth.processors.sort_molecule_atoms.SortMoleculeAtoms

attribute), 78
sorted_nodes (vermouth.molecule.Molecule property),

122
SortMoleculeAtoms (class in ver-

mouth.processors.sort_molecule_atoms),
77

source() (vermouth.pdb.pdb.PDBParser static method),
49

split_comments() (in module vermouth.parser_utils),
127

splt() (vermouth.pdb.pdb.PDBParser static method), 49
sprsde() (vermouth.pdb.pdb.PDBParser static method),

49
ssbond() (vermouth.pdb.pdb.PDBParser static method),

49
StyleAdapter (class in vermouth.log_helpers), 103
subgraph (vermouth.ismags.ISMAGS attribute), 100
subgraph() (vermouth.molecule.Molecule method), 122
subgraph_is_isomorphic() (ver-

mouth.ismags.ISMAGS method), 101
subgraph_isomorphisms_iter() (ver-

mouth.ismags.ISMAGS method), 101
System (class in vermouth.system), 129

T
target_attr (vermouth.processors.sort_molecule_atoms.SortMoleculeAtoms

attribute), 78
ter() (vermouth.pdb.pdb.PDBParser method), 49
title() (vermouth.pdb.pdb.PDBParser static method),

49
to_ff (vermouth.map_parser.MappingDirector at-

tribute), 111
to_ff (vermouth.processors.do_mapping.DoMapping

attribute), 63
to_ff() (vermouth.map_parser.MappingBuilder

method), 110
to_molecule() (vermouth.molecule.Block method), 114
TruncFormatter (class in ver-

mouth.truncating_formatter), 130
type (vermouth.truncating_formatter.FormatSpec

attribute), 130
TypeAdapter (class in vermouth.log_helpers), 103

U
upper_bound (vermouth.processors.apply_rubber_band.ApplyRubberBand

attribute), 55

V
variables (vermouth.forcefield.ForceField attribute), 93
vermouth

module, 132
vermouth.citation_parser

module, 84
vermouth.dssp

module, 40
vermouth.dssp.dssp

module, 35
vermouth.edge_tuning

module, 85
vermouth.ffinput

module, 89
vermouth.file_writer

module, 91
vermouth.forcefield

module, 93
vermouth.geometry

module, 95
vermouth.gmx

module, 45
vermouth.gmx.gro

module, 40
vermouth.gmx.itp

module, 40
vermouth.gmx.itp_read

module, 41
vermouth.gmx.rtp

module, 44
vermouth.gmx.topology

module, 44
vermouth.graph_utils

module, 96
vermouth.ismags

module, 98
vermouth.log_helpers

module, 102
vermouth.map_input

module, 104
vermouth.map_parser

module, 106
vermouth.molecule

module, 113
vermouth.parser_utils

module, 125
vermouth.pdb

module, 51
vermouth.pdb.pdb

module, 45
vermouth.processors

module, 80
vermouth.processors.add_molecule_edges

module, 51

Index 149

VerMoUTH Documentation, Release 0.10.1.dev55

vermouth.processors.annotate_mut_mod
module, 53

vermouth.processors.apply_posres
module, 54

vermouth.processors.apply_rubber_band
module, 54

vermouth.processors.attach_mass
module, 59

vermouth.processors.average_beads
module, 60

vermouth.processors.canonicalize_modifications
module, 60

vermouth.processors.do_links
module, 62

vermouth.processors.do_mapping
module, 63

vermouth.processors.gro_reader
module, 68

vermouth.processors.locate_charge_dummies
module, 68

vermouth.processors.make_bonds
module, 70

vermouth.processors.merge_all_molecules
module, 71

vermouth.processors.merge_chains
module, 71

vermouth.processors.name_moltype
module, 72

vermouth.processors.pdb_reader
module, 72

vermouth.processors.processor
module, 73

vermouth.processors.quote
module, 74

vermouth.processors.rename_modified_residues
module, 74

vermouth.processors.repair_graph
module, 75

vermouth.processors.set_molecule_meta
module, 77

vermouth.processors.sort_molecule_atoms
module, 77

vermouth.processors.tune_cystein_bridges
module, 78

vermouth.processors.water_bias
module, 79

vermouth.rcsu
module, 84

vermouth.rcsu.contact_map
module, 80

vermouth.rcsu.go_pipeline
module, 81

vermouth.rcsu.go_structure_bias
module, 81

vermouth.rcsu.go_utils
module, 83

vermouth.rcsu.go_vs_includes
module, 83

vermouth.selectors
module, 128

vermouth.system
module, 129

vermouth.truncating_formatter
module, 130

vermouth.utils
module, 131

VirtualSiteCreator (class in ver-
mouth.rcsu.go_vs_includes), 83

W
width (vermouth.truncating_formatter.FormatSpec at-

tribute), 130
write() (vermouth.file_writer.DeferredFileWriter

method), 92
write_atomtypes() (in module ver-

mouth.gmx.topology), 45
write_gmx_topology() (in module ver-

mouth.gmx.topology), 45
write_gro() (in module vermouth.gmx.gro), 40
write_molecule_itp() (in module vermouth.gmx.itp),

40
write_nonbond_params() (in module ver-

mouth.gmx.topology), 45
write_pdb() (in module vermouth.pdb.pdb), 50
write_pdb_string() (in module vermouth.pdb.pdb),

50

Z
zero_padding (vermouth.truncating_formatter.FormatSpec

attribute), 130

150 Index

	General Overview
	Installation instructions
	Quickstart
	General layout
	Citing
	References

	Martinize 2 workflow
	Pipeline
	1) Read input files
	Reading PDB files
	Make bonds
	Annotate mutations and modifications

	2) Repair the input graph
	Repair graph
	Identify modifications
	Rebuild coordinates for missing atoms

	3) Resolution transformation
	4) Apply Links
	5) Post processing
	6) Write output

	Technical background
	Processor
	Data
	Molecule
	Block
	Link
	Modification
	Force Field
	Mapping

	Graph algorithms
	Definitions
	Graph
	Subgraph
	Graph isomorphism
	Subgraph isomorphism
	Induced subgraph isomorphism
	Maximum common induced subgraph

	Isomorphism

	File formats
	Data structures and file formats
	Force field file (.ff)
	Allowed major directives
	Allowed sub-directives: Moleculetype
	Allowed sub-directives: Link
	Allowed sub-directives: Modifications
	Special meta data

	Mapping files (.map & .mapping)
	File structure (.map)
	Allowed directives .map
	Example of .map file

	File structure (.mapping)
	Allowed directives .mapping
	Example file of .mapping file

	Tutorials
	Adding new residues and links
	The input force field
	The output force field
	The mapping
	The Links
	Links and Modifications

	Adding new modifications
	The input force field
	The output force field
	The mapping

	vermouth
	vermouth package
	Subpackages
	vermouth.dssp package
	Submodules
	vermouth.dssp.dssp module

	Module contents

	vermouth.gmx package
	Submodules
	vermouth.gmx.gro module
	vermouth.gmx.itp module
	vermouth.gmx.itp_read module
	vermouth.gmx.rtp module
	vermouth.gmx.topology module

	Module contents

	vermouth.pdb package
	Submodules
	vermouth.pdb.pdb module

	Module contents

	vermouth.processors package
	Submodules
	vermouth.processors.add_molecule_edges module
	vermouth.processors.annotate_mut_mod module
	vermouth.processors.apply_posres module
	vermouth.processors.apply_rubber_band module
	vermouth.processors.attach_mass module
	vermouth.processors.average_beads module
	vermouth.processors.canonicalize_modifications module
	vermouth.processors.do_links module
	vermouth.processors.do_mapping module
	vermouth.processors.gro_reader module
	vermouth.processors.locate_charge_dummies module
	vermouth.processors.make_bonds module
	vermouth.processors.merge_all_molecules module
	vermouth.processors.merge_chains module
	vermouth.processors.name_moltype module
	vermouth.processors.pdb_reader module
	vermouth.processors.processor module
	vermouth.processors.quote module
	vermouth.processors.rename_modified_residues module
	vermouth.processors.repair_graph module
	vermouth.processors.set_molecule_meta module
	vermouth.processors.sort_molecule_atoms module
	vermouth.processors.tune_cystein_bridges module
	vermouth.processors.water_bias module
	Subclassing

	Module contents

	vermouth.rcsu package
	Submodules
	vermouth.rcsu.contact_map module
	vermouth.rcsu.go_pipeline module
	vermouth.rcsu.go_structure_bias module
	Subclassing
	vermouth.rcsu.go_utils module
	vermouth.rcsu.go_vs_includes module

	Module contents

	Submodules
	vermouth.citation_parser module
	vermouth.edge_tuning module
	vermouth.ffinput module
	vermouth.file_writer module
	vermouth.forcefield module
	vermouth.geometry module
	vermouth.graph_utils module
	vermouth.ismags module
	ISMAGS Algorithm

	vermouth.log_helpers module
	vermouth.map_input module
	vermouth.map_parser module
	vermouth.molecule module
	vermouth.parser_utils module
	vermouth.selectors module
	vermouth.system module
	vermouth.truncating_formatter module
	vermouth.utils module

	Module contents

	Indices and tables
	Bibliography
	Python Module Index
	Index

